Page 5 of 6
Journal of the American Chemical Society
2006, 128, 3974. (d) Tse, S. K. S.; Xue, P.; Lin, Z.; Jia, G. Hydro-
Isotope Effects on the Radical Polymerization of Styrene. J. Am. Chem. Soc.
1966, 88, 1199.
gen/Deuterium Exchange Reactions of Olefins with Deuterium Oxide
Mediated by the Carbonylchlorohydrido-tris(triphenylphosphine)-
ruthenium(II) Complex. Adv. Synth. Catal. 2010, 352, 1512.
1
2
3
4
5
6
7
8
(13) For examples of these synthetic routes, see: (a) references 12c and
12e (b) Gülak, S.; Gieshoff, T. N.; von Wangelin, A. J. Olefin-Assisted Iron-
Catalyzed Alkylation of Aryl Chlorides. Adv. Synth. Catal. 2013, 355, 2197.
(c) García-Rubín, S.; González-Rodríguez, C.; García-Yebra, C.; Varela, J.
A.; Esteruelas, M. A.; Saá, C. Dihydrobiphenylenes through Ruthenium‐
Catalyzed [2+2+2] Cycloadditions of ortho‐Alkenylarylacetylenes with
Alkynes. Angew. Chem. Int. Ed. 2014, 53, 1841. (d) Vassilikogiannakis, G.;
Orfanopoulos, M. Stereochemistry and Isotope Effects of the [2 + 2] Pho-
tocycloadditions of Arylalkenes to C60. A Stepwise Mechanism. J. Am.
Chem. Soc. 1997, 119, 7394.
(14) (a) Gao, F.; Hoveyda, A. H. α-Selective Ni-Catalyzed Hydroalu-
mination of Aryl- and Alkyl-Substituted Terminal Alkynes: Practical Syn-
theses of Internal Vinyl Aluminums, Halides, or Boronates. J. Am. Chem.
Soc. 2010, 132, 10961. For an additional alternative route, see: (b) Kerr, W.
J.; Morrison, A. J.; Pazicky, M.; Weber, T. Modified Shapiro Reactions with
Bismesitylmagnesium As an Efficient Base Reagent. Org. Lett. 2012, 14,
2250.
(15) (a) Luo, C.; Bandar, J. S. Superbase-Catalyzed anti-Markovnikov
Alcohol Addition Reactions to Aryl Alkenes. J. Am. Chem. Soc. 2018, 140,
3547. (b) Luo, C.; Bandar, J. S. Synthesis of β-Phenethyl Ethers by Base-
Catalyzed Alcohol Addition Reactions to Aryl Alkenes. Synlett 2018, 29,
2218.
(16) For a related approach applied to acrylate derivatives, see: (a) Ma-
thias, L. J.; Colletti, R. F. Facile synthesis of α-deuterated acrylates and
activated vinyls. Macromolecules 1988, 21, 857. (b) Zinn, M. F.; Harris, T.
M.; Hill, D. G.; Hauser, C. R. Base-catalyzed Hydrogen Deuterium Ex-
change at the α-Carbon of Ethyl Cinnamate and Certain Related Com-
pounds. J. Am. Chem. Soc. 1963, 85, 71.
(9) (a) Giuseppe, A. D.; Castarlenas, R.; Pérez-Torrente, J. J.; Lahoz, F.
J.; Polo, V.; Oro, L. A. Mild and Selective H/D Exchange at the β Position
of Aromatic α-Olefins by N-Heterocyclic Carbene–Hydride–Rhodium
Catalysts. Angew. Chem. Int. Ed. 2011, 50, 3938. (b) Giuseppe, A. D.;
Castarlenas, R.; Pérez-Torrente, J. J.; Lahoz, F. J.; Oro, L. A. Hydride-
Rhodium(III)-N-Heterocyclic Carbene Catalysts for Vinyl-Selective H/D
Exchange: A Structure–Activity Study. Chem. Eur. J. 2014, 20, 8391.
(10) A large number of enantioselective styrene functionalization reac-
tions exist; for selected reviews and examples of a subset that demonstrate
the diversity of these reactions, see: (a) Kolb, H. C.; VanNieuwenhze, M.
S.; Sharpless, K. B. Catalytic Asymmetric Dihydroxylation Chem. Rev.
1994, 94, 2483. (b) Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Copper
Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angew. Chem.
Int. Ed. 2016, 55, 48. (c) Degennaro, L.; Trinchera, P.; Luisi, R. Recent
Advances in the Stereoselective Synthesis of Aziridines. Chem. Rev. 2014,
114, 7881. (d) Han, J. W.; Hayashi, T. Palladium-catalyzed asymmetric
hydrosilylation of styrenes with trichlorosilane. Tetrahedron: Asymmetry
2014, 25, 479. (e) Jui, N. T.; Garber, J. A. O.; Finelli, F. G.; MacMillan, D.
W. C. Enantioselective Organo-SOMO Cycloadditions: A Catalytic Ap-
proach to Complex Pyrrolidines from Olefins and Aldehydes. J. Am. Chem.
Soc. 2012, 134, 11400. (f) Friis, S. D.; Pirnot, M. T.; Buchwald, S. L.
Asymmetric Hydroarylation of Vinylarenes Using a Synergistic Combina-
tion of CuH and Pd Catalysis J. Am. Chem. Soc. 2016, 138, 8372. (g) Wong,
O. A.; Shi, Y. Organocatalytic Oxidation. Asymmetric Epoxidation of Ole-
fins Catalyzed by Chiral Ketones and Iminium Salts. Chem. Rev. 2008, 108,
3958. (h) Chanthamath, S.; Iwasa, S. Enantioselective Cyclopropanation of
a Wide Variety of Olefins Catalyzed by Ru(II)–Pheox Complexes. Acc.
Chem. Res. 2016, 49, 2080.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(17) Use of CD3OD as a solvent provided no α-deuteration.
1
(18) Intermediate 3 is frequently observed by H NMR as a minor side
(11) For reviews and examples, see: (a) Zhang, Z.; Tang, W. Drug me-
tabolism in drug discovery and development. Acta Pharmacol. Sin. B 2018,
8, 721. (b) Silverman, R. B., Holladay, M. W. The Organic Chemistry of
Drug Design and Drug Action; Academic Press: San Diego, CA, 2014; pp
357-422. (c) Guengerich, F. P. Common and Uncommon Cytochrome
P450 Reactions Related to Metabolism and Chemical Toxicity. Chem. Res.
Toxicol. 2001, 14, 611. (d) Nelson, S. D.; Trager, W. F. The Use of Deuter-
ium Isotope Effects to Probe the Active Site Properties, Mechanism of
Cytochrom P450-Catalyzed Reactions, and Mechanisms of Metabolically
Dependent Toxicity. Drug Metab. Dispos. 2003, 31, 1481. (e) Usmani, K.
A.; Chen, W. G.; Sadeque, A. J. M. Identification of Human Cytochrome
P450 and Flavin-Containing Monooxygenase Enzymes Involved in the
Metabolism of Lorcaserin, a Novel Selective Human 5-Hydroxytryptamine
2C Agonist. Drug Metab. Dispos. 2012, 40, 761. (f) Shetty, H. U.; Nelson,
W. L. Chemical aspects of metoprolol metabolism. Asymmetric synthesis
product for substrates in Table 1. Upon heating, the concentration of this
intermediate decreases and an increase of α-deuterated styrene is observed.
These observations support the proposed addition/elimination pathway;
however, it is possible that a direct α-deprotonation process may provide a
pathway for α-deuteration; see: (a) Mori, H.; Matsuo, T.; Yoshioka, Y.;
Katsumura, S. Highly Activated Vinyl Hydrogen in a Significantly Twisted
Styrene. J. Org. Chem. 2006, 71, 9004. (b) Tricotet, T.; Fleming, P.; Cotter,
J.; Hogan, A.-M. L.; Strohmann, C.; Gessner, V. H.; O’Shea, D. F. Selective
Vinyl C−H Lithiation of cis-Stilbenes. J. Am. Chem. Soc. 2009, 131, 3142.
(19) We also considered that a primary KIE in the elimination of
MeOH from ether 3 could contribute to the high α-deuterium incorpora-
tion. Subjection of α-deuterated styrenes to basic DMSO solutions resulted
in α-protium incorporation at a rate identical to styrene α-deuterium in-
corporation in basic DMSO-d6 solutions. This result suggests that a KIE in
the elimination step is not responsible for high α-deuterium incorporation.
(20) For examples of base-catalyzed aromatic deuteration, see: (a) Hu,
Y.; Liang, L.; Wei, W.; Sun, X.; Zhang, X.; Yan, M. A convenient synthesis
of deuterium labeled amines and nitrogen heterocycles with KOt-
Bu/DMSO-d6. Tetrahedron 2015, 71, 1425. (b) Patel, M.; Saunthwal, R.
K.; Verma, A. K. Base-Mediated Deuteration of Organic Molecules: A
Mechanistic Insight. ACS Omega 2018, 3, 10612. (c) Hirono, Y.; Koba-
yashi, K.; Yonemoto, M.; Kondo, Y. Metal-free deprotonative functionali-
zation of heteroaromatics using organic superbase catalyst. Chem. Commun.
2010, 46, 7623.
and
absolute
configuration
of
the
3-[4-(1-hydroxy-2-
methoxyethyl)phenoxy]-1-(isopropylamino)-2-propanols, the diastereo-
meric benzylic hydroxylation metabolites. J. Med. Chem. 1988, 31, 55. (g)
Sun, H.; Scott, D. O. Structure‐based Drug Metabolism Predictions for
Drug Design. Chem. Biol. Drug Des. 2010, 75, 3.
(12) For selected examples of α-deuterated styrenes used in mechanis-
tic studies, see: (a) Maji, A.; Reddi, Y.; Sunoj, R. B.; Maiti, D. Mechanistic
Insights on Orthogonal Selectivity in Heterocycle Synthesis. ACS Catal.
2018, 8, 10111. (b) Fang, X.; Yu, P.; Cerai, G. P.; Morandi, B. Unlocking
Mizoroki–Heck-Type Reactions of Aryl Cyanides Using Transfer Hydro-
cyanation as a Turnover-Enabling Step. Chem. Eur. J. 2016, 22, 15629. (c)
Fra, L.; Millán, A.; Souto, J. A.; Muñiz, K. Indole Synthesis Based On A
Modified Koser Reagent. Angew. Chem. Int. Ed. 2014, 53, 7349. (d) Cor-
nell, C. N.; Sigman, M. S. Discovery of and Mechanistic Insight into a Lig-
and-Modulated Palladium-Catalyzed Wacker Oxidation of Styrenes Using
TBHP. J. Am. Chem. Soc. 2005, 127, 2796. (e) Walker, K. L.; Dornan, L.
M.; Zare, R. N.; Waymouth, R. M.; Muldoon, M. J. Mechanism of Catalytic
Oxidation of Styrenes with Hydrogen Peroxide in the Presence of Cationic
Palladium(II) Complexes. J. Am. Chem. Soc. 2017, 139, 12495. (f) Pryor,
W. A.; Henderson, R. W.; Patsiga, R. A.; Carroll, N. Hydrogen Secondary
(21) (a) Anionic Polymerization: Principles, Practice, Strength, Conse-
quences and Applications; Hadjichristidis, N.; Hirao, A., Eds; ꢀSpringer:
Tokyo, Japan, 2015. (b) Baskaran, D.; Müller, A. H. E. Anionic Vinyl
Polymerization. In Controlled and Living Polymerization: From Mechanisms
to Applications; Müller, A. H. E., Matyjaszewski, K., Eds.; Wiley-VCH Ver-
lag GmbH & KGaA: Weinheim, 2009; pp 1−56. (c) Ntetsikas, K.; Alzah-
rany, Y.; Polymeropoulos, G.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N.
Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of
Phosphazene Superbases. Polymers 2017, 9, 538. (d) Hurley, S. A.; Tait, P.
J. T. Anionic polymerization initiated by lithium diethylamide in organic
5
ACS Paragon Plus Environment