J IRAN CHEM SOC (2012) 9:507–512
511
summarized in Table 1. These results show that this novel
method afforded diaryl sulfones in good to excellent yields.
After the success of mesitylene in performing of the
reaction and to show the generality of the method, different
isomers of xylene were utilized under these reaction con-
ditions; the best result was obtained for meta isomer and
the corresponding sulfone was produced after 1 h in 85%
yield (Table 1, entry 2), whereas in the case of ortho and
para isomers, lower yields were obtained (Table 1, entries
5. T.M. Willams, T.M. Ciccarone, S.C. MacTough, C.S. Rooney,
S.K. Balani, J.H. Condra, E.A. Emini, M.E. Goldman, W.J.
Greenlee, L.R. Kauffman, J.A. Brien, P.S. Anderson, J. Med.
Chem. 36, 1291 (1993)
6. M. Artico, R. Silvestri, E. Pagnozzi, B. Bruno, E. Novellino, G.
Greco, S. Massa, A. Ettorre, G. Loi, F. Scintu, P. La Colla, J.
Med. Chem. 43, 1886 (2000)
7
. R.C. Hastings, S.G. Franzblau, Ann. Rev. Pharmacol. Toxicol.
8, 231 (1966)
8. G. Wozel, Int. J. Dermatol. 28, 17 (1989)
2
9. J.S. Lo, R.E. Berg, K.J. Tomecki, Int. J. Dermatol. 28, 497 (1989)
0. W.E. Truce, T.C. Klinger, W.W. Brand, in Organic Chemistry of
Sulfur, ed. by S. Oae (Plenum Press, New York, 1977)
1. M. Ueda, K. Uchiyama, T. Kano, Synthesis 4, 323 (1984)
1
3
and 4). This observation may have arisen from this fact
that the reaction site in m-xylene is activated with two
methyl groups. When toluene was reacted with N-meth-
ylpyridinium p-toluenesulfonate in the presence of TPPD,
the corresponding sulfone was produced in 80% yield with
an ortho:para ratio of 23:78.
1
12. B.M. Graybill, J. Org. Chem. 32, 2931 (1967)
13. S. Re
J. Org. Chem. 64, 6479 (1999)
´
pichet, C. Le Roux, P. Hernandez, J. Dubac, J.R. Desmurs,
1
4. B.M. Choudary, N.S. Chowdari, M.L. Kantam, J. Chem. Soc.
Perkin Trans. 1, 2689 (2000)
Naphthalene was also sulfonylated under the above
conditions and produced the corresponding product in 85%
yield. In the case of benzene, (p-tolyl)phenyl sulfone was
achieved after 3 h in 55% yield. Also, deactivated arenes
such as chlorobenzene and bromobenzene were success-
fully sulfonylated and obtained results have shown high
p-selectivity in these compounds (Table 1, entries 8 and 9).
However, the reactions of nitrobenzene, benzaldehyde, and
acetophenone were unsuccessful even after 24 h.
15. G. A. Olah, T. Mathew, G. K. S. Parakash, Chem. Commun.
(2001) 1696
1
6. B.M. Choudary, N.S. Chowdari, M.L. Kantam, J. Chem. Soc.
Perkin Trans 1, 2689 (2000)
1
7. B.M. Mirjalali, M.A. Zolfigol, A. Bamoniri, L. Khazdooz, Bull.
Korean Chem. Soc. 24, 1009 (2003)
18. H. Z. Li, L.W. Xiao, H.Y. Li, K. F. Wang, X. Li, J. Chem. Res.
S) 493 (2003)
(
1
2
9. B. Yao, Y. Zhang, Tetrahedron Lett. 49, 5385 (2008)
0. R.R. Poondra, P.M. Fischer, N.J. Turner, J. Org. Chem. 69, 6920
(2004)
Triphenylphosphine ditriflate shows chemoselectivity in
all of the FC-sulfonylation reactions.
21. K. Gewald, O. Calderon, H. Schaefer, U. Hain, Liebigs Ann.
Chem. 1390 (1984)
2
2
2
2
2. H.W. Pinnick, S.P. Brown, E.A. McLean, L.W. Zoller, J. Org.
Chem. 46, 3758 (1981)
3. Y. Nishimito, S.A. Babu, M. Yasuda, A. Baba, J. Org. Chem. 73,
9465 (2008)
4. J.P. Hwang, G.K. Suria Prakash, G.A. Olah, Tetrahedron 56,
Conclusions
7
5. L. Field, J. Am. Chem. Soc. 74, 394 (1952)
199 (2000)
In summary, we have developed FC-sulfonylation of aro-
matic compounds with methyl p-toluenesulfonate as a new
sulfonylating precursor. Performing of the reaction under
mild reaction conditions at room temperature and sulf-
onylation of deactivated benzene such as chlorobenzene
are remarkable features of the present procedure. Tri-
phenylphosphine ditriflate shows chemoselectivity in all of
the FC-sulfonylation reactions.
26. C.M. Welch, H.A. Smith, J. Am. Chem. Soc. 73, 4391 (1951)
27. B.M. Graybill, J. Org. Chem. 32, 2931 (1967)
2
2
8. H. Drews, S. Meyerson, J. Am. Chem. Soc. 83, 3871 (1961)
9. P. Salehi, M.M. Khodaei, M.A. Zolfigol, S. Sirouszadeh, Bull.
Chem. Soc. Jpn. 76, 1863 (2003)
30. P. Salehi, M.M. Khodaei, M.A. Zolfigol, S. Zeinoldini, Synth.
Commun. 33, 1367 (2003)
3
3
3
3
3
1. M.M. Khodaei, A. Alizadeh, E. Nazari, Tetrahedron Lett. 48,
199 (2007)
2. A. Alizadeh, M.M. Khodaei, E. Nazari, Tetrahedron Lett. 48,
805 (2007)
3. A. Alizadeh, M.M. Khodaei, E. Nazari, Bull. Korean Chem. Soc.
8, 1854 (2007)
4. K. Bahrami, M.M. Khodaei, F. Shahbazi, Tetrahedron Lett. 49,
931 (2008)
5. K. Bahrami, M.M. Khodaei, F. Shahbazi, Chem. Lett. 37, 844
2008)
4
Acknowledgments The authors thank the Razi University Research
Council for financial support of this work.
6
2
3
References
(
1
2
3
4
. F.R. Jensen, G. Goldman, in Friedel-Crafts and Related Reac-
tions, ed. by G. Olah (Wiley-Interscience, New York, 1964)
. R. Taylor, in Comprehensive Chemical Kinetics, eds. by C.
H. Bamford, C. F. H. Tipper (Elsevier, New York, 1972)
. K.M. Roy, in Ullmann’s Encyclopedia of Industrial Chemistry,
ed. by W. Gerhartz (VCH, Weinheim, 1985)
. J.B. McMahan, R.J. Gulakowsky, O.S. Weislow, R.J. Schoktz,
V.L. Narayanan, D.J. Clanton, R. Pedemonte, F.W. Wassmundt,
R.W.J. Buckheit, W.D. Decker, E.L. White, J.P. Bader, M.R.
Boyd, Antimicrob. Agents Chemother. 37, 754 (1993)
36. M.M. Khodaei, E. Nazari, Chem. Lett. 39, 390 (2010)
37. M.M. Khodaei, E. Nazari, Bull. Korean Chem. Soc. 32, 1784
(2011)
38. E.M. Shamis, M.M. Dashevskii, Zh. Org. Khim. 2, 280 (1966)
39. S. Meyerson, H. Drews, E.K. Fields, Anal. Chem. 36, 1294
(1964)
40. R.P. Singh, R.M. Kamble, K.L. Chandra, P. Saravanan, V.K.
Singh, Tetrahedron 57, 241 (2001)
41. J.B. Hendrickson, S.M. Schwartzman, Tetrahedron Lett. 16, 273
(1975)
123