Palladacycle-catalyzed Suzuki–Miyaura coupling
Nekoueishahraki, J.-M. Basset, V. Polshettiwar, Chem. Soc. Rev.
2011, 40, 5181. j)A. Balanta, C. Godard, C. Claver, Chem. Soc. Rev.
2011, 40, 4973.
information). To investigate this issue further, we next examined
the role of possible active palladium(0) nano species by
performing the Hg(0) poisoning test,[22,23] in which a reaction
catalyzed by metal(0) or nanoparticle species become retarded
owing to amalgamation with mercury(0).[24,25] However, metal–
ligand complexes bearing metal in higher oxidation states
usually remain unchanged in the presence of mercury(0).
Therefore an experiment with Hg(0) was performed using
4-bromonitrobenzene (0.5 mmol) and phenylboronic acid
(0.55 mmol) as substrate and 1L3 (0.5 mol%) as the palladium
source. The palladium complex 1L3 was stirred in isopropanol
containing K2CO3 and a stoichiometric amount of Hg(0) for
30 min prior to addition of the reacting substrates. Progress
was monitored by TLC. Initially, the reaction proceeded
smoothly, but subsequently it became retarded, and after 24 h
we were able to isolate only 35% of the cross-coupled product.
The retarding effect of Hg(0) became prominent as the reaction
proceeded, possibly due to the formation of Pd(0) nanoparticles
from complex 1L3 during the course of the reaction.
Thus our present result is quite significant as the desired biaryls
could be achieved at room temperature using isopropanol as a
solvent and with relatively low catalyst loading (0.5 mol% of the Pd
complex 1L3). In comparison with our previous results on the
Suzuki–Miyaura cross-coupling reaction involving triphenylphosphine
chalcogenides,[4f] triphenylmethylamine[8a] and phosphinoamine–Pd
(II)–imidazole complexes,[4g] this method offers a mild and efficient
methodology that can promote Suzuki–Miyaura reactions with an
easily accessible and cheap ligand system.
[3] a)M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, Eur. J.
Inorg. Chem. 1998, 155. b)R. Martin, S. L. Buchwald, Acc. Chem. Res.
2008, 41, 1461. b)P. Bhattacharyya, J. D. Woollins, Polyhedron 1995,
14, 3367.
[4] a)T. Schareina, R. Kepme, Angew. Chem. Int. Ed. 2002, 41, 1521. b)S.
Urgaonkar, M. Nagarajan, Tetrahedron Lett. 2002, 43, 8921. c)N.
Biricik, F. Durap, C. Kayan, B. Gumgum, N. Gurbuz, I. Ozdemir, W. H.
Ang, Z. Fei, R. Scopelliti, J. Organomet. Chem. 2008, 693, 2693. d)G.
A. Molander, B. Canturk, Angew. Chem. Int. Ed. 2009, 48, 9240. e)B.
Milde, D. Schaarschmidt, T. Rüffer, H. Lang, Dalton Trans. 2012, 41,
5377. f)P. Das, U. Bora, A. Tairai, C. Sarmah, Tetrahedron Lett. 2010,
51, 1479. g)G. Borah, D. Boruah, G. Sarmah, G. Bharadwaj, U. Bora,
Appl. Organometal. Chem. 2013, 27, 688–694.
[5] C. G. Arena, E. Rotondo, F. Faraone, Organometallics 1991, 10, 3877.
[6] V. E. Uhlig, S. Keiser, Z. Anorg. Allg. Chem. 1974, 406, 1.
[7] G. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151.
[8] a)P. Das, C. Sarmah, A. Tairai, U. Bora, Appl. Organometal. Chem.
2011, 25, 283. b)L. Chahen, B. Therrien, G. Suss-Fink, Eur. J. Inorg.
Chem. 2007, 32, 5045.
[9] a)L. Botella, C. Najera, Angew. Chem. Int. Ed. 2002, 41, 179. b)L.
Botella, C. Najera, J. Organomet. Chem. 2002, 663, 46. c)I. P.
Beletskaya, A. V. Cheprakov, J. Organomet. Chem. 2004, 689, 4055.
d)D. A. Alonso, C. Najera, Chem. Soc. Rev. 2010, 39, 2891.
[10] M. Mondal, U. Bora, Green Chem. 2012, 14, 1873.
[11] a)W.-J. Liu, Y.-X. Xie, Y Liang, J.–H Li, Synthesis, 2006, pp. 860. b)J.-H.
Li, W.-J. Liu, Y.-X. Xie, J. Org. Chem. 2005, 70, 5409. c)R. Y. Hsiao, F.
Qian, R. Fu, R. K. Khan, W. Doubleday, J. Org. Chem. 2009, 74, 1381.
[12] D. N. Korolev, N. A. Bumagin, Tetrahedron Lett. 2005, 46, 5751.
[13] a)N. Shahnaz, B. Banik, P. Das, Tetrahedron Lett. 2013, 54, 2886. b)B.
Banik, A. Tairai, N. Shahnaz, P. Das, Tetrahedron Lett. 2012, 53,
5627. c)I. D. Kostas, B. R. Steele, A. Terzis, S. V. Amosova, A. V.
Martynov, N. A. Makhaeva, Eur. J. Inorg. Chem. 2006, 2642.
[14] I. D. Kostas, F. J. Andreadaki, D. Kovala-Demertzi, C. Prentjas, M. A.
Demertzis, Tetrahedron Lett. 2005, 46, 1967.
[15] D. P. Costa, S. M. Nobre, Tetrahedron Lett. 2013, 54, 4582.
[16] a)S. J. Termont, H. U. Rahman, J. Am. Chem. Soc. 1984, 106, 5759. b)H.
Horino, N. Inoue, J. Org. Chem. 1981, 46, 4416.
[17] W. Rauf, A. L. Thompson, J. M. Brown, Dalton Trans. 2010, 39, 10414.
[18] G.-R. Peh, E. A. B. Kantchev, J.–. C. Er, J. Y. Ying, Chem. Eur. J.
2010, 16, 4010.
Conclusion
We have found that the Suzuki–Miyaura coupling can be carried
out in isopropanol with aryl bromides and arylboronic acid in the
presence of stable and easily accessible acetanilide-based
palladacycles. The reaction advances efficiently at low catalyst load-
ing (0.5 mol% Pd complex) in isopropanol, which is a desirable sol-
vent for organic synthesis. Synthesis of this catalytic complex is very
simple and the starting materials used are commercially available
and cheap. The formation of Pd(0) nanoparticles was observed dur-
ing the reaction, which probably acted as the real catalyst. This new
protocol is inexpensive and effective for many electronically di-
verse aryl bromides and arylboronic acids, providing biphenyl de-
rivatives in good to excellent yields (88–99%).
[19] General procedure for the Suzuki–Miyaura reaction with in situ gen-
erated palladium catalyst. A 50 ml round-bottom flask was charged
with a mixture of aryl halide (0.5 mmol), aryl boronic acid (0.55
mmol), base (1.5 mmol), Pd(OAc)2 (0.5 mol%) and acetanilide L1–
L3 (0.5 mol%), and the mixture was stirred at room temperature
for the required time. After completion, the reaction mixture was di-
luted with water (20 ml) and extracted with ether (3 × 20 ml). The
combined extract was washed with brine (2 × 20 ml) and dried over
Na2SO4. After evaporation of the solvent under reduced pressure,
the residue was subjected to chromatography (silica gel, ethyl ace-
tate–hexane, 1:9) to obtain the desired products. The products were
confirmed by comparing the melting point, 1H and 13C NMR and
mass spectral data with authentic samples.
Acknowledgments
[20] V. P. W. Bohm, C. W. K. Gstottmayr, T. Weskamp, W. H. Hermann,
J. Organomet. Chem. 2000, 595, 186. b)J.-C. Shi, P.-Y. Yang, Q. Tong,
Y. Wu, Y. Peng, J. Mol. Catal. A: Chem. 2006, 259, 7.
[21] K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. H. John-
son, P. Kleine, C. Knight, M. A. Nagy, D. A. Perry, M. Stefaniak, Green
Chem. 2008, 10, 31.
[22] K. Q. Yu, W. Sommer, M. Weck, C. W. Jones, J. Catal. 2004, 226, 101.
[23] N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal.
2006, 348, 609.
[24] D. R. Anton, R. H. Crabtree, Organometallics 1983, 2, 855.
[25] P. Foley, R. Dicosimo, G. M. Whitesides, J. Am. Chem. Soc. 1980,
102, 6713.
The authors acknowledge the Department of Science and Tech-
nology, New Delhi, for financial support for this work under the
DST Woman Scientist Scheme (No. SR/WOS-A/CS-78/2011(G).
References
[1] a)M. Catellani, E. Motti, N. D. Ca, R. Ferraccioli, Eur. J. Org. Chem. 2007,
4153. b)D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174.
c)A. Suzuki, Boronic Acids: Preparation, Applications in Organic Synthesis
and Medicine (Ed.: D. G. Hall), Wiley-VCH, Weinheim, 2005, p. 123.
[2] a)J. Yang, S. Liu, J.-F. Zheng, J. Zhou, Eur. J. Org. Chem. 2012, 6248. b)
A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176. c)J. Dupont,
C. S. Consorti, J. Spencer, Chem. Rev. 2005, 105, 2527. d)A. V.
Gaikwad, A. Holuigue, M. B. Thathagar, J. E. Elshof, G. Rothenberg,
Chem. Eur. J. 2007, 13, 6908. e)J. D. Sellars, P. G. Steel, Chem. Soc.
Rev. 2011, 40, 5170. f)D. V. Partyka, Chem. Rev. 2011, 111, 1529.
g)A. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722. h)A. Suzuki, Y.
Yamamoto, Chem. Lett. 2011, 40, 894. i)A. Fihri, M. Bouhrara, B.
Supporting Information
Additional supporting information may be found in the online
version of this article at the publisher’s web site.
Appl. Organometal. Chem. 2014, 28, 230–233
Copyright © 2014 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc