¨
E. ERDIK AND D. OZKAN
CuI in THF at ꢂ20 8C and stirring at that temperature for
15–30 min. Mixed n-butyl (phenyl) cuprates n-Bu (FG-C6H4)
CuMgBr 1ab–ae (FG ¼ H b, 4-Me c, 3-MeO d, 4-Br e) were
prepared according to the method A2. To n-BuCu prepared by the
addition of 1 mol equiv of n-BuMgBr to a suspension of CuI in THF
at ꢂ20 8C was added 1 molar equivalent of FG-C6H4MgBr at this
temperature with continuous stirring for 15–30 min.
[18] S. H. Bertz, G. Dabbagh, J. Org. Chem. 1984, 49, 1119.
[19] S. F. Martin, J. R. Fishpaugh, J. M. Power, D. M. Giulando, R. A. Jones, C.
M. Nunn, A. H. Cowley, J. Am. Chem. Soc. 1988, 110, 7226.
[20] S. H. Bertz, G. Miao, M. Eriksson, Chem. Commun. 1996, 815–816.
[21] S. H. Bertz, M. Eriksson, G. Miao, P. S. Synder, J. Am. Chem. Soc. 1996,
118, 10906–10907.
[22] D. E. Bergbreiter, J. M. Killough, J. Org. Chem. 1976, 41, 2750–2753.
[23] D. E. Bergbreiter, G. M. Whitesides, J. Org. Chem. 1975, 40, 779–782.
[24] S. M. H. Kabir, M. T. Rahman, J. Organomet. Chem. 2001, 619, 31–35.
[25] F. Leyendecker, F. Jesser, Tetrahedron Lett. 1980, 21, 1311–1314.
[26] B. H. Lipshutz, E. L. Ellsworth, Tetrahedron Lett. 1988, 29, 893–898.
[27] D. E. Frantz, D. A. Singleton, J. P. Snyder, J. Am. Chem. Soc. 1997, 119,
3383–3384.
The general procedure for the competitive coupling of a pair of
n-PentBr 2a and 2b–g with a cuprate is given below for the
coupling of n-butyl (phenyl) cuprate 1ab with n-PentBr 2a and
PhCH2Br 2g. The scale for competition is 1:7:7 for cuprate:
2a:2b–g. To a flame-dried two-necked and round bottom flask
equipped with a septum cap and a stirring bar, CuI (0.5 mmol) in
3 cm3 of THF was added at ꢂ20 8C and n-BuMgBr (0.5 mmol) was
placed by a syringe and the mixture was stirred for 2 min. To the
light yellow n-BuCu suspension was added PhMgBr (0.5 mmol) by
syringe at ꢂ20 8C. Heterogeneous solution of n-BuPhMgBr 1ab
was stirred at that temperature for 15 min. To the cuprate 1ab, a
mixture of n-PentBr 2a (3.5 mmol) and PhCH2Br (3.5 mmol)
prepared separately was added rapidly. The flask was removed
from the cooling bath and the reaction mixture was stirred
at 25 8C for an appropriate time (5, 10, 15,. . ., 40 min or 10, 20, 30,
40, 50 min or 15, 30, 45, 60 min). The internal standard,
di-n-pentylether (0.9918 mmol, 0.2 cm3) was added and the
mixture was hydrolyzed with saturated NH4Cl solution containing
20% NH3. The aqueous phase was extracted with diethyl ether
and the product mixture was analyzed by GLC.
[28] M. Yamanaka, E. Nakamura, J. Am. Chem. Soc. 2001, 123, 5675–5681.
[29] M. Yamanaka, E-i. Nakamura, J. Am. Chem Soc. 2005, 127, 4697–4706.
¨
¨
[30] E. Erdik, O. Omu¨r Pekel, J. Organometal Chem. 2008, 693, 338–342.
¨
¨
[31] E. Erdik, O. Omu¨r Pekel, Tetrahedron Lett. 2009, 50, 1500–1503.
[32] E. Nakamura, S. Mori, Angew. Chem. Int. Ed. 2000, 39, 3750–3771.
[33] C. R. Johnson, G. A. Dutra, J. Am. Chem. Soc. 1973, 95, 7783–7788.
[34] R. G. Pearson, C. D. Gregory, J. Am. Chem. Soc. 1976, 98, 4088–4094.
[35] W. J. Spanenberg, B. E. Snell, M. C. Su, Microchem. J. 1993, 47, 79–89.
[36] S. H. Bertz, S. Cope, D. Donna, M. Murphy, C. A. Ogle, Angew. Chem. Int.
Ed. 2007, 46, 7082–7085.
[37] H. L. Goering, S. Kantner, E. P. Seitz,, Jr., J. Org. Chem. 1985, 50,
5495–5499.
[38] A. Guijarro, R. D. Rieke, Angew. Chem. Int. Ed. 1998, 37, 1679–1681.
[39] L. Shi, Y. Chu, P. Knochel, H. Mayr, Angew. Chem. Int. Ed. 2008, 47,
202–204.
[40] H. Yamataka, N. Miyano, T. Hanafusa, J. Org. Chem. 1991, 56,
2573–2575.
[41] H. Yamataka, N. Fujimoro, Y. Kawafuji, T. Hanafusa, J. Am. Chem. Soc.
1967, 109, 4305–4308.
[42] H. Yamataka, T. Matsuyama, T. Hanafusa, J. Am. Chem. Soc. 1989, 131,
4912–4918.
[43] C. H. Ho, T. C. Lau, New J. Chem. 2000, 859–863.
[44] A. Guijarro, D. M. Rosenberg, R. D. Rieke, J. Am. Chem. Soc. 1999, 121,
4155–4167.
[45] L. Keinicke, P. Fristrup, P.-O. Norby, R. Madsen, J. Am. Chem. Soc. 2005,
127, 15756–15761.
Acknowledgements
We thank the Turkish Scientific and Technical Research Council
(grant no. TBAG 106T644) for the financial support.
[46] J. A. McPhee, J. E. Dubois, Tetrahedron Lett. 1972, 467–470.
[47] M. J. Aurell, M. J. Banuls, R. Mestres, E. Monuz, Tetrahedron 2001, 57,
1067–1074.
[48] F. Kynes, K. E. Bergmann, J. T. Welch, J. Org. Chem. 1998, 63,
2824–2828.
REFERENCES
[49] M. Makosza, O. Lobanova, A. Kwast, Tetrahedron 2004, 60,
2577–2581.
[50] K. M. Maclin, H. G. Richey, J. Org. Chem. 2002, 67, 4370–4371.
[1] N. Krause, Modern Organocopper Chemistry, Wiley-VCH, Weinheim,
2002.
[2] R. J. K. Taylor, Organocopper Reagents: A Practical Approach, Oxford
University Press, Oxford, 1994.
[3] E. J. Corey, D. J. Beames, J. Am. Chem. Soc. 1972, 94, 7210–7211.
[4] H. O. House, M. J. Umen, J. Org. Chem. 1973, 38, 3893–3901.
[5] W. H. Mandeville, G. M. Whitesides, J. Org. Chem. 1974, 39, 400–405.
[6] F. Aravalo, L. Castedo, B. R. Fernandez, A. Mourino, L. Sarandeses,
Chem. Lett. 1988, 745–748.
[7] H. Malmberg, M. Nilsson, C. Ullenius, Tetrahedron Lett. 1982, 23,
3823–3826.
[8] B. H. Lipshutz, J. A. Kozlowski, D. A. Parker, S. L. Nguyen, K. E.
McCarthy, J. Organomet. Chem. 1985, 285, 437–447.
[9] J. P. Gorlier, L. Hamon, J. Levisalles, J. Wagnon, J. Chem. Soc. Chem.
Commun. 1973, 88–89.
˘
ˆ
[51] E. Erdik, F. Eroglu, D. Kahya, J. Phys. Org. Chem. 2005, 18, 950–956.
¨
¨
[52] E. Erdik, O. Omu¨r, Appl. Organomet. Chem. 2005, 29, 887–893.
[53] P. Zuman, R. C. Patel, Techniques in Organic Reaction Kinetics, Wiley,
New York, 1984.
[54] N. S. Isaacs, Physical Organic Chemistry, Longmans, Harlow, 1987.
[55] J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, Mc-Graw
Hill, Toronto, 1995.
[56] F. Ruff, J. G. Csizmadia, Organic Reactions, Equilibria, Kinetics and
Mechanism, Elsevier, New York, 1994.
[57] F. D. Pruchnik, Organometallic Chemistry of the Transition Elements
(Chapter 11), Plenum Press, New York, 1990.
[58] J. P. Collman, L. S. Hegedus, Principles and Applications of Organo-
transition Metal Chemistry (Chapter 14.1), University Science Books,
Mill Valley, CA, 1987.
[10] H. O. House, C.-Y. Chu, J. M. Wilkins, M. J. Umen, J. Org. Chem. 1975, 40,
1460–1469.
[59] D. F. Shriver, P. W. Atkins, C. H. Langford, Inorganic Chemistry (Chapter
6.3), Oxford University Press, London, 1992.
[11] G. H. Posner, C. E. Whitten, J. J. Sterling, D. J. Brunelle, Tetrahedron Lett.
1974, 30, 2591–2594.
[60] J. A. McPhee, M. Boussu, J.-E. Dubois, J. Chem. Soc. Perkin III 1974,
1525–1530.
[61] J. Leonard, B. Lygo, G. Procter, Advanced Practical Organic Chemistry,
Blackie, London, 1995.
[62] R. N. Keller, H. D. Wycoff, Inorg. Synth. 1946, 2, 1–4.
[63] D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals,
Pergamon Press, Oxford, 1988.
[12] B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski, Tetrahedron 1984, 40,
5005–5038.
[13] B. H. Lipshutz, Synthesis 1987, 325–341.
[14] E-i. Nakamura, N. Yoshikai, Bull. Chem. Soc. Jpn 2004, 77, 1–12.
[15] P. Knochel, C. Piazza, Angew. Chem. Int. Ed. 2002, 41, 3263–3265.
[16] S. H. Bertz, G. Dabbagh, J. Chem. Soc. Chem. Commun. 1982,
1030–1032.
[64] H. J. Barber, J. Chem. Soc. 1943, 1, 79.
[65] C. H. Watson, J. F. Eastham, J. Organomet. Chem. 1967, 9, 165–168.
[17] S. H. Bertz, G. Dabbagh, G. M. Villacorta, J. Am. Chem. Soc. 1982, 104,
5824–5826.
Copyright ß 2009 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2009, 22 1148–1154