Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 4
COMMUNICATION
Journal Name
reactions between
to Fe(III) takes place to afford the species
intermediate is most likely to undergo a 1,2-aryl migration
directly (path a) or indirectly via (path c) to give and
regenerate the catalytically active Fe(III) species along with
HDDQ‾. Subsequent deprotonation of by HDDQ‾ forms the
desired 3-arylindole . The formation of 2-arylindole can be
derived from re-aromatization directly from (path b) or
through (path c) by the loss of a proton. When an aryl
substituent (Ar) is not electron-rich enough, its expected much
less or no participation in the process of can explain the
only formation of (e.g., 3g and 3h, Table 2, entries 7-8).
Alternatively, a radical mechanism could be also conceived
(Scheme 3b).8b Species
is oxidized by DDQ to afford the
electrophilic Fe(IV) species , which then undergoes an alkene
insertion to generate . Next, the intermediate is most likely
to undergo a 1,2-aryl migration directly (path a) or indirectly via
(path c) to give along with Fe(II), which is reoxidized by
HDDQ• to regenerate the catalytically active Fe(III) species. As
mentioned above, subsequent deprotonation of by HDDQ‾
occurs to give . In this pathway, FeCl3 seems to be involved in
single electron transfer process as an essential catalyst for the
reaction. However, 1,2-aryl migration in this oxidative
cyclization reaction was also promoted to some extent (albeit
less than FeCl3) by other Lewis acids (e.g., InCl3, Sc(OTf)3,
Yb(OTf)3, ZnCl2, MgCl2), which are incapable of catalyzing
oxidative coupling processes via higher oxidation state.
Therefore, although a mechanism remains elusive at this
juncture, the ionic mechanism seems to work more generally in
this cooperative Lewis acid (FeCl3)/DDQ system.
B
and the activated DDQ
C
by coordination
Med. Chem., 1992, 35, 4823; (d) M. S.DCO.IP: 1e0d.1r0a3s9,/MC6.OHBo0s0s0a7i4nF,
Bioorg. Med. Chem., 2007, 15, 5981; (e) T. C. Leboho, J. P.
Michael, W. A. L. van Otterlo, S. F. van Vuuren, C. B. de Koning,
Bioorg. Med. Chem. Lett., 2009, 19, 4948; (f) O. Guzel, A.
Maresca, A. Scozzafava, A. Salman, A. T. Balaban, C. T.
Supuran, J. Med. Chem., 2009, 52, 4063; (g) T. I. Richardson, C.
A. Clarke, K.-L. Yu, Y. K. Yee, T. J. Bleisch, J. E. Lopez, S. A. Jones,
N. E. Hughes, B. S. Muehl, C. W. Lugar, T. L. Moore, P. K.
Shetler, R. W. Zink, J. J. Osborne, C. Montrose-Rafizadeh, N.
Patel, A. G. Geiser, R. J. S. Galvin, J. A. Dodge, ACS Med. Chem.
D
. Next, the
D
E
F
F
2
3
D
E
Lett., 2011, 2, 148; (h) C. Mésangeau, E. Amata, W. Alsharif,
M. J. Seminerio, M. J. Robson, R. R. Matsumoto, J. H. Poupaert,
C. R. McCurdy, Eur. J. Med. Chem., 2011, 46, 5154.
D
→ F
3
3
4
(a) W. Kuriyama, T. Kitahara, Heterocycles, 2001, 55, 1; (b) Y.
Zhang, P. Yang, W. Xu, C. J. Chou, C. Liu, X. Wang, ACS Med.
A
G
Chem. Lett., 2013,
Selected recent examples: (a) A. Penoni, J. Volkmann, K. M.
Nicholas, Org. Lett., 2002, , 699; (b) Y. Jia, J. Zhu, J. Org.
4, 235.
H
H
4
Chem., 2006, 71, 7826; (c) K. Inamoto, T. Saito, K. Hiroya, T.
Doi, Synlett, 2008, 3157; (d) A. Lamar, K. M. Nicholas,
Tetrahedron, 2009, 65, 3829; (e) N. Batail, A. Bendjeriou, T.
Lomberget, R. Barret, V. Dufaud, L. Diakovitch, Adv. Synth.
Catal., 2009, 351, 2055; (f) S. Murru, A. A. Gallo, R. S.
Srivastava, Eur. J. Org. Chem., 2011, 2035; (g) W.-I. Lee, J.-W.
Jung, J. Sim, H. An, Y.-G. Suh, Tetrahedron, 2013, 69, 7211; (h)
R. Kancherla, T. Naveen, D. Maiti, Chem. Eur. J., 2015, 21, 8723.
Reviews on the regioselective C3-arylation of indoles: (a) L.
Joucla, L. Djakovitch, Adv. Synth. Catal., 2009, 351, 673; (b) A.
H. Sandtorv, Adv. Synth. Catal., 2015, 357, 2403.
E
F
F
2
5
6
(a) Y. H. Jang, S. W. Youn, Org. Lett., 2014, 16, 3720; (b) S. W.
Youn, T. Y. Ko, M. J. Jang, S. S. Jang, Adv. Synth. Catal., 2015,
357, 227; (c) S. W. Youn, S. R. Lee, Org. Biomol. Chem., 2015,
13, 4652.
7
8
Selected recent reviews on iron-catalyzed reactions: (a) A. A.
O. Sarhan, C. Bolm, Chem. Soc. Rev., 2009, 38, 2730; (b) A.
Fürstner, Angew. Chem. Int. Ed., 2009, 48, 1364; (c) C.-L. Sun,
B.-J. Li, Z.-J. Shi, Chem. Rev., 2011, 111, 1293; (d) K. Gopalaiah,
Chem. Rev., 2013, 113, 3248; (e) I. Bauer, H.-J. Knölker, Chem.
Rev., 2015, 115, 3170.
In summary, we have developed a highly regioselective
synthesis of 3-arylindoles by using the cooperative FeCl3/DDQ
system, involving 1,2-aryl migration. This new protocol
represents an attractive route for the synthesis of 3-arylindoles
from non-indole precursors, readily accessible β-aryl-
substituted 2-styrylanilines, using inexpensive catalyst and
oxidant, mostly after short reaction time. Noteworthy is the
unprecedented, unique catalytic effect of FeCl3 in the presence
of DDQ on the 1,2-aryl migratory process.
Using FeCl3 in the presence of DDQ, see: (a) Z. Huang, L. Jin, Y.
Feng, P. Peng, H. Yi, A. Lei, Angew. Chem. Int. Ed., 2013, 52
,
7151; (b) U. A. Kshirsagar, C. Regev, R. Parnes, D. Pappo, Org.
Lett., 2013, 15, 3174; (c) T. Tomakinian, R. Guillot, C.
Kouklovsky, G. Vincent, Angew. Chem. Int. Ed., 2014, 53
,
11881; (d) Y. Ma, D. Zhang, Z. Yan, M. Wang, C. Bian, X. Gao,
E. E. Bunel, A. Lei, Org. Lett., 2015, 17, 2174. Using other Lewis
acids in the presence of DDQ, see: (e) M. Shimizu, H. Itou, M.
Miura, J. Am. Chem. Soc., 2005, 127, 3296; (f) Y. Zhang, C. J. Li,
Angew. Chem. Int. Ed., 2006, 45, 1949; (g) N. Liu, L.-L. Mao, B.
Yang, S.-D. Yang, Chem. Commun., 2014, 50, 10879.
(a) M. Akazome, T. Kondo, Y. Watanabe, J. Org. Chem., 1994,
59, 3375; (b) M. Shen, B. E. Leslie, T. G. Driver, Angew. Chem.
Int. Ed., 2008, 47, 5056; (c) K. Sun, S. Liu, P. M. Bec, T. G. Driver,
Angew. Chem. Int. Ed., 2011, 50, 1702; (d) Y.-L. Li, J. Li, A.-L.
Ma, Y.-N. Huang, J. Deng, J. Org. Chem., 2015, 80, 3841 and
ref 6.
This work was supported by both the Basic Science Research
Program and Nano·Material Technology Department Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education and Ministry of Science, ICT
9
and
future
Planning
(nos.
2012R1A1A2041471,
2012M3A7B4049644, 2015R1A2A2A01002559, and 2014-
011165). We thanks Mr. Sung Hong Kim (Daegu Center, Korea
Basic Science Institute) for HRMS analysis.
10 S. Ortgies, A. Breder, Org. Lett., 2015, 17, 2748 and refs 6 and
9d.
Notes and references
11 (a) K. Komeyama, T. Morimoto, K. Takaki, Angew. Chem. Int.
Ed., 2006, 45, 2938; (b) J. Michaux, V. Terrasson, S. Marque, J.
Wehbe, D. Prim, J.-M. Campagne, Eur. J. Org. Chem., 2007,
2601; (c) Z. C. Dal, J. Michaux, A. Zarate-Ruiz, E. Gayon, D.
Virieux, J.-M. Campagne, V. Terrasson, G. Pieters, A. Gaucher,
D. Prim, J. Organomet. Chem., 2010, 696, 296.
1
Selected recent reviews: (a) S. Cacchi, G. Fabrizi, Chem. Rev.,
2011, 111, PR215; (b) M. Shiri, Chem. Rev., 2012, 112, 3508;
(c) M. Platon, R. Amardeil, L. Djakovitch, J.-C. Hierso, Chem.
Soc. Rev., 2012, 41, 3929; (g) M. Inman, C. J. Moody, Chem.
Sci., 2013,
(a) H. H. Hoppe, A. Kerkenaar, A. K. Sijpesteijn, Pesticide
Biochem. Physiol., 1976, , 422; (b) D. Morin, R. Zini, S. Urien,
4, 29.
2
6
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins