4880
J . Org. Chem. 1997, 62, 4880-4882
Ta ble 1. Diels-Ald er Rea ction s Ca ta lyzed by Va r iou s
Bism u th (III) Ch lor id e or Tr ifla te-Ca ta lyzed
Dien op h ilic Activity of r-Eth ylen ic
Ald eh yd es a n d Keton es
Lew is Acid s
product
en-
catalyst
(mol %)
experimental
conditionsa
and
isomers
%
try reaction
yieldb
Bernard Garrigues, Ferdinand Gonzaga,
He´le`ne Robert, and J acques Dubac*
1
2
3
4
1 + 4
1 + 4
1 + 4
2 + 5
Sc(OTf)3 (10)
Bi(OTf)3 (1)
BiCl3 (10)
[TiCp*2(H2O)]- 25 °C; 13 h
(OTf)2
0 °C; 12 h
0 °C; 4 h
0 °C; 2 h
8 (89/11)d 96c
8 (93/7)d
8 (95/5)d
9
87
86
He´te´rochimie Fondamentale et Applique´e
(UPRES(A) 5069 CNRS), Universite´ Paul-Sabatier,
118 route de Narbonne, 31062 Toulouse Ce´dex, France
90c
5
6
7
8
9
10
11
12
13
2 + 5
2 + 5
2 + 5
2 + 6
2 + 6
2 + 6
3 + 7
3 + 7
3 + 7
Bi(OTf)3 (0.1) 25 °C; 14 h
9
9
9
10
10
85
82
82
60c
69
62
65e
88
61
Bi(OTf)3 (1)
BiCl3 (10)
Yb (fod)3 (1)
Bi (0Tf)3 (1)
BiCl3 (10)
SmI2 (5)
25 °C; 3 h
25 °C; 45 min
rt; 24 h
25 °C; 3 h
25 °C; 2 h
25 °C; 24 h
25 °C; 20 h
25 °C; 15 h
Received March 3, 1997
The weak shielding of the 4f shell (lanthanoid contrac-
tion) and the relativistic effects responsible for the
stabilization of 6s orbital (inert pair) confer to bismuth-
(III) a potential Lewis acidity, many complexes of which
have been reported.1 Curiously, the catalytic properties
of bismuth compounds, in particular those of Bi(III) as
Lewis acids, was developed only recently, although the
applications in organic synthesis of the organobismuth-
anes derived from Bi(V) are well known.2 Some recent
results in this area, including some from our laboratory,
concern the catalytic activity of Lewis acids derived from
Bi(III) for Mukaiyama-aldol3 and -Michael reactions,3a,b
halosilane activation,4 carbonyl-ene reaction,5 and acy-
lations,6 especially Friedel-Crafts acylation.6d,e Catalytic
properties of Bi(III) compounds are also known for other
reactions like the oxidation of alkenes,7 R-ketols,8 or
epoxides,9 and for the Knoevenagel condensation.10
This new attraction to bismuth is understandable.
Increasingly, catalysts and the processes using them
should be consistent with ecological standards. Bismuth
is the least toxic of the heavy elements.11 Biochemistry,12
toxicology,13 and environmental effects14 of bismuth
compounds have been recently reported. Bismuth com-
10
11 (90/10)e
11 (98/2)e
11 (97/3)e
Bi (OTf)3 (1)
BiCl3 (10)
a
Solvent CH2Cl2, except entry 8 (none); 1 M solutions, diene
and dienophile in equimolar amounts, except for entries 1-3 (diene
0.12 M, dienophile 0.4 M), and entry 11-13 (diene 1 M, dienophile
b
0.5 M). Yields in isolated product. c References: entries 1,15 4,16
d
8,17 11.18 endo/exo. e 1,4/1,3 isomers.
pounds are already used as industrial catalysts (manu-
facture of acrolein,7a acrylonitrile)7b and are employed in
pharmaceutical products.12
We present here the first examples of Diels-Alder
reactions catalyzed by bismuth(III) derivatives, bismuth
trichloride, or bismuth tris(triflate), in comparison with
some analogous Lewis acids well-known for their efficient
catalytic activity. The reactivity of standard dienes,
cyclopentadiene (1), 2,3-dimethylbutadiene (2), and iso-
prene (3) has been examined with four dienophiles,
methyl vinyl ketone (4), ethyl vinyl ketone (5), acrolein
(6), and methacrolein (7).
(1) Lange, K. C. H.; Klapo¨tke, T. M. In The Chemistry of Organic
Arsenic, Antimony and Bismuth Compounds; Patai, S., Ed.; J . Wiley:
New York, 1994; pp 315-366.
Resu lts a n d Discu ssion
In the case of the Diels-Alder cycloaddition between
1 and 4, scandium triflate (10% mol, 12 h, 96% yield) is
a better catalyst than ytterbium or yttrium triflates.15
Under the same conditions, 1% of Bi(OTf)3 gave an 87%
yield of 8 after 4 h (Table 1, entry 2), and 10% of BiCl3
gave the same yield after only 2 h (entry 3). The endo/
exo selectivity was a little higher (93/7 and 95/5, respec-
tively) than with Sc(OTf)3 (89/11).
The same two Bi-catalysts were compared with [TiCp*2-
(H2O)](OTf)2 in the case of the reaction between 2 and
516 (Table 1, entries 4-7). BiCl3 (10% mol) led to a
convenient result (45 min, 82% yield), and Bi(OTf)3
proved more efficient than the Ti-catalyst; 0.1% of Bi-
(OTf)3 and 2% of the Ti-catalyst gave a comparable result.
The bismuth catalysts were also found to be more
efficient than an ytterbium catalyst, Yb(fod)3. In the
(2) (a) Barton, D. H. R. Pure Appl. Chem. 1987, 59, 937. (b) Finet,
J . P. Chem. Rev. 1989, 89, 1487 and refences therein.
(3) (a) Wada, M.; Takeichi, E.; Matsumoto, T. Bull. Chem. Soc. J pn.
1991, 69, 990. (b) Le Roux, C.; Gaspard-Iloughmane, H.; Dubac, J .;
J aud, J .; Vignaux, P. J . Org. Chem. 1993, 58, 1835. (c) Le Roux, C.;
Gaspard-Iloughmane, H.; Dubac, J . Bull. Soc. Chim. Fr. 1993, 130,
832. (d) Le Roux, C.; Gaspard-Iloughmane, H.; Dubac, J . J . Org. Chem.
1994, 59, 2238. (e) Fontaine, E.; Baltas, M.; Escudier, J . M.; Gorrichon,
L. Mon. Chem. 1996, 127, 519.
(4) (a) Labrouille`re, M.; Le Roux, C.; Gaspard-Iloughmane, H;
Dubac, J . Synlett 1994, 723. (b) Labrouille`re, M.; Le Roux, C.; Oussaid,
A.; Gaspard-Iloughmane, H.; Dubac, J . Bull. Soc. Chim. Fr. 1995, 132,
522. (c) Montero, J . L.; Winum, J . Y.; Leydet, A.; Kamal, M.; Pavia, A.
A.; Roque, J . P. Carbohyd. Res. 1997, in press.
(5) Peidro, L.; Le Roux, C.; Laporterie, A.; Dubac, J . J . Organomet.
Chem. 1996, 521, 397.
(6) (a) Dubac, J .; Le Roux, C.; Gaspard-Iloughmane, H. In Progress
in Organosilicon Chemistry; Marciniec, B., Chojnowski, J ., Eds.; Gordon
and Breach: Basel, Switzerland, 1995; pp 325-343. (b) Le Roux, C.;
Mandrou, S.; Dubac, J . J . Org. Chem. 1996, 61, 3885. (c) Le Roux, C.;
Dubac, J . Organometallics 1996, 15, 4646. (d) Dubac, J .; Labrouille`re,
M.; Laporterie, A.; Desmurs, J . R. (Rhoˆne-Poulenc Chimie) 1996, Eur.
Pat. Appl. EP 698,593 (FR Appl. 94/10,523, 24 Aug 1994) (Chem. Abstr.
1996, 124, 316758y). (e) Desmurs, J . R.; Labrouille`re, M.; Dubac, J .;
Laporterie, A.; Gaspard, H.; Metz, F. In The Roots of Organic
Development; Desmurs, J . R., Ratton, S., Eds.; Elsevier: Amsterdam,
The Netherlands, 1996, pp 15-28.
(7) (a) Ohara, T.; Sato, T.; Shimizu, N. In Ullman’s Encyclopedia of
Industrial Chemistry; Gerhartz, W., Ed.; VCH: Weinheim (Germany),
1985; Vol. A1, pp 149-160. (b) Langvardt, P. W. In Ullman’s
Encyclopedia of Industrial Chemistry; Gerhartz,W., Ed.; VCH: Wein-
heim (Germany), 1985; Vol. A1, pp 177-184.
(11) Irwing-Sax, N.; Bewis, R. J . Dangerous Properties of Industrial
Materials; Van Nostrand Reinhold: New York, 1989; pp 283, 284, 522,
and 523.
(12) Dill, K.; McGown, E. L. In The Chemistry of Organic Arsenic,
Antimony and Bismuth Compounds; Patai, S., Ed.; J . Wiley: New York,
1994; pp 695-713.
(13) Wormser U.; Nir I. In The Chemistry of Organic Arsenic,
Antimony and Bismuth Compounds; Patai, S., Ed.; J . Wiley: New York,
1994; pp 715-723.
(14) Maeda, S. In The Chemistry of Organic Arsenic, Antimony and
Bismuth Compounds; Patai, S., Ed.; J . Wiley: New York, 1994; pp
725-759.
(8) Le Boisselier, V.; Coin, C.; Postel, M.; Dunach, E. Tetrahedron
Lett. 1995, 51, 4991.
(9) (a) Zevaco, T.; Dunach, E.; Postel, M. Tetrahedron Lett. 1993,
34, 2601. (b) Le Boisselier, V.; Dunach, E.; Postel, M. J . Organomet.
Chem. 1994, 482, 119.
(15) Kobayashi, S.; Hachiya, I.; Araki, M.; Ishitani, H. Tetrahedron
Lett. 1993, 34, 3755.
(16) Hollis, K. T.; Robinson, N. P.; Bosnich, B. J . Am. Chem. Soc.
1992, 114, 5464.
(10) Prajapati, D.; Sandhu, J . S. Chem. Lett. 1992, 1945.
S0022-3263(97)00389-7 CCC: $14.00 © 1997 American Chemical Society