Communication
Catalysis Science & Technology
Prod., 2005, 69, 68; (c) M. L. Lerch, M. K. Harper and D. J.
Faulkner, J. Nat. Prod., 2003, 66, 667; (d) M. Stavri, K. T.
Mathew, T. Gibson, R. T. Williamson and S. Gibbons, J. Nat.
Prod., 2004, 67, 892; (e) H. Takamura, H. Wada, N. Lu and I.
Kadota, Org. Lett., 2011, 13, 3644.
3 (a) J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh and
R. T. McBurney, Chem. Soc. Rev., 2009, 38, 1530; (b) M.
Gholami and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997;
(c) W. A. Chalifoux and R. R. Tykwinski, Nat. Chem., 2010, 2,
967; (d) W. Shi and A. Lei, Tetrahedron Lett., 2014, 55, 2763.
4 (a) C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 2, 422; (b) A. S.
Hay, J. Org. Chem., 1960, 25, 1275; (c) A. S. Hay, J. Org.
Chem., 1962, 27, 3320.
5 (a) H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2009, 131,
17052; (b) C. C. C. Johansson Seechurn, M. O. Kitching, T. J.
Colacot and V. Snieckus, Angew. Chem., Int. Ed., 2012, 51, 5062.
6 (a) G. Eglinton and A. R. Galbraith, Chem. Ind., 1956, 737;
(b) G. Eglinton and A. R. Galbraith, J. Chem. Soc., 1959, 889.
7 Selected references on Cu-catalysed homocoupling of termi-
nal alkynes, see: (a) S. E. Allen, R. R. Walvoord, R. Padilla-Sa-
linas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234; (b)
K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi and N.
Mizuno, Angew. Chem., Int. Ed., 2008, 47, 2407; (c) S. Zhang,
X. Liu and T. Wang, Adv. Synth. Catal., 2011, 353, 1463; (d)
A. Kusuda, X.-H. Xu, X. Wang, E. Tokunaga and N. Shibata,
Green Chem., 2011, 13, 843; (e) T. Oishi, K. Yamaguchi and
N. Mizuno, ACS Catal., 2011, 1, 1351; ( f ) Y. Zhu and Y. Shi,
Org. Biomol. Chem., 2013, 11, 7451.
Fig.
1 UV–visible absorption spectra of in situ generated CuIJI)-
phenylacetylide (B) in CH3CN.
regeneration of CuCl. The proposed mechanism is supported
by the experimental results given in Table 2, the UV absorp-
tion of the π–alkyne complex A and the in situ formation of
copper(I)-phenylacetylide B (see Fig. 1).
Conclusions
We have successfully developed a novel homocoupling method
for terminal alkynes (including substrates with electron-
withdrawing groups) using CuCl as a catalyst and mediated by
visible light. This method can be used for the preparation of
1,3-conjugated diynes. This is the first example of the use of
visible light to initiate the Glasser homocoupling reaction of ter-
minal alkynes to synthesize 1,3-conjugated diynes at room tem-
perature using a CuCl catalyst in the absence of base/ligands
and expensive palladium catalysts. This mechanistic study illus-
trates that the π–alkyne complex A and copperIJI)-acetylides (al-
kyl and aryl, λmax = 425–490 nm) are the key light-absorbing spe-
cies and are responsible for the visible light-induced Csp–Csp
homocoupling of terminal alkynes. The cost-effective nature of
the catalyst, the absence of bases/ligands, the wide tolerance of
different functional groups (electron-withdrawing groups) and
the high reaction efficiency under low-energy visible light irradi-
ation make this process a green alternative to existing thermal
methodologies.
8 X. Feng, Z. Zhao, F. Yang, T. Jin, Y. Ma and M. Bao,
J. Organomet. Chem., 2011, 696, 1479.
9 Pd/Cu-catalysed homocoupling of terminal alkynes, see: (a)
K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron
Lett., 1975, 16, 4467; (b) W. Susanto, C.-Y. Chu, W. J. Ang,
T.-C. Chou, L.-C. Lo and Y. Lam, J. Org. Chem., 2012, 77,
2729; (c) K. Mitsudo, N. Kamimoto, H. Murakami, H.
Mandai, A. Wakamiya, Y. Murata and S. Suga, Org. Biomol.
Chem., 2012, 10, 9562.
10 Selected references on Ni/Cu-catalysed homocoupling of
terminal alkynes, see: (a) W. Yin, C. He, M. Chen, H. Zhang
and A. Lei, Org. Lett., 2009, 11, 709; (b) J. D. Crowley, S. M.
Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson and
A. M. Z. Slawin, J. Am. Chem. Soc., 2010, 132, 6243.
11 (a) K. Yin, C. Li, J. Li and X. Jia, Green Chem., 2011, 13, 591;
(b) X. Jia, K. Yin, C. Li, J. Li and H. Bian, Green Chem.,
2011, 13, 2175; (c) X. Niu, C. Li, J. Li and X. Jia, Tetrahedron
Lett., 2012, 53, 5559.
12 Light-induced photoredox catalyst, see: (a) C. K. Prier, D. A.
Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113,
5322; (b) P. Y. Tehshik, A. I. Michael and D. Juana, Nat.
Chem., 2010, 2, 527.
13 Light-induced copper-redox catalyst, see: (a) S. Paria and O.
Reiser, ChemCatChem, 2014, 6, 2477; (b) A. C. Hernandez-
Perez and S. K. Collins, Angew. Chem., Int. Ed., 2013, 52, 12696.
14 Light-induced click reaction, see: M. A. Tasdelen and Y.
Yagci, Angew. Chem., Int. Ed., 2013, 52, 5930.
Acknowledgements
This work was supported by the Ministry of Science and Tech-
nology, Taiwan.
Notes and references
1 (a) P. Siemsen, R. C. Livingston and F. Diederich, Angew.
Chem., Int. Ed., 2000, 39, 2632; (b) M. Brøndsted Nielsen and
F. Diederich, Chem. Rec., 2002, 2, 189–198; (c) A. L. K. Shi Shun
and R. R. Tykwinski, Angew. Chem., Int. Ed., 2006, 45, 1034.
2 (a) B. W. Gung, C. Gibeau and A. Jones, Tetrahedron:
Asymmetry, 2004, 15, 3973; (b) S. Kanokmedhakul, K.
Kanokmedhakul, I. Kantikeaw and N. Phonkerd, J. Nat.
15 (a) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters,
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2016