1424
M. Z. Kassaee, S. Rostamizadeh, N. Shadjou, E. Motamedi, and M. Esmaeelzadeh
Vol 47
3245, 3350 cmꢂ1
;
1H NMR (300 MHz, CDCl3): d ¼ 6.66 (t,
Scheme 2. A provisional mechanism for the synthesis of dihydroquina-
zoline in the presence of Al/Al2O3 NPs.
1H, J ¼ 6.0 Hz, CH), 6.77 (d, 1H, J ¼ 6.0 Hz, CH), 7.26 (d,
t, J1 ¼ 1.2 Hz, J2 ¼ 9.0 Hz, 1H, CH), 7.33 (s, 1H, NH), 7.59
(d, 1H, J ¼ 9.0 Hz, CH), 7.69 (t, J ¼ 6.0 Hz, 1H, CH), 7.83
(m, 1H, CH), 7.92 (d, 1H, J ¼ 9.0 Hz, CH), 8.19 (d, 1H, J ¼
6.0 Hz, 8.34 (s, 1H, CH), 8.54 (s, 1H, NH); 13C NMR
(75MHz, DMSO-d6): d ¼ 65.1, 114.6, 114.9, 117.5, 121.6,
122.7, 123.3, 125.9, 127.4, 131.3, 133.4, 133.6, 134.7, 144.3,
144.3, 147.3, 147.7, 163.3; MS (EI): m/e ¼ 269 (Mþ), 221,
147, 120, 92, 65, 39.
Acknowledgments. Authors gratefully acknowledge Research
Council of K. N. Toosi University of Technology and Tarbiat
Modares University for partial financial support of this work.
REFERENCES AND NOTES
[1] Yale, H. L.; Kalkstein, M. J Med Chem 1967, 10, 334.
[2] Neil, G. L.; Li, L. H.; Buskirk, H. H.; Moxlcy, T. E. Cancer
Chemother 1972, 56, 163.
[3] Bonola, G.; Da Re, P.; Magistretti, M. J.; Massarani, E.;
Setnikar, I. J Med Chem 1968, 11, 1136.
[4] Bolger, J. W. (Rexall Drug Co.) US Pat. 3,257,397 (1966);
Chem Abstr 1966, 66, 8933b.
Philips X-pert X-ray powder diffraction (XRD) diffractometer
was employed for characterization of nanoparticles.
Fabrication of Al/Al2O3 NPs. Nanoparticles used in this
work were fabricated through arc discharge. The electrodes
were customized by cutting commercial 2 mm diameter rather
pure aluminum rods (95.50%) into 40 mm length segments. A
current of 100 A was passed through the electrodes in ethylene
glycol, until visible explosions occurred (0.01 – 1s). To main-
tain a stable current discharge, with an average voltage of 25
V, the cathode-anode gap was set at ꢁ 1 mm with an angle of
85ꢀ.
[5] Boehringer Sohn, C. H. Fr Pat. M 2588 (1964); Chem
Abstr 1964, 61, 16075h.
[6] Alaimo, R. J.; Russel, H. E. J Med Chem 1972, 15, 335.
[7] Cohen, E.; Klarberg, B.; Vaughan, J. R. J Am Chem Soc
1959, 81, 5508.
[8] Okumura, K.; Oine, T.; Yamada, Y.; Hayashi, G.; Nakama,
M. J Med Chem 1968, 11, 348.
[9] Instituto De Angeli S. P. A, French Patent M 1893, 1964;
Chem Abstr 1964, 60, 3956.
[10] Levin, J. I.; Chan, P. S.; Bailey, T.; Katocs, A. S.; Venkate-
san, A. M. Bioorg Med Chem Lett 1994, 4, 1141.
[11] Abdel-Jalil, R. J.; Volter, W.; Saeed, M. Tetrahedron Lett
2004, 45, 3475.
General
procedure
for
the
synthesis
of
hydroquinazolinone. Prepared Al/Al2O3 NPs (0.036 g) was
stirred for 2 min with isatoic anhydride (0.163 g, 1 mmol), ar-
omatic aldehyde (1 mmol), and ammonium acetate at room
temperature. Then the mixture was heated in a paraffin bath at
115ꢀC for different periods of time (Table 1). After completion
of the reaction (monitored by thin-layer chromatography, TLC;
n-hexane and EtOAc, 2:1), excess ammonium acetate was
washed away by water (5 mL). Subsequently the hydroquina-
zolinone products were crystallized from ethanol.
Spectral data for some compounds. 4-(1,2,3,4-tetrahy-
dro-4-oxoquinazolin-2-yl)benzonitrile (5c). This compound
was obtained as a white crystalline solid, mp 350 – 351ꢀC
(Lit. mp 350 – 351 [19]), IR: 1602, 1677, 2225, 3027, 3124,
[12] Liu, J. F.; Lee, J.; Dalton, A. M.; Bi, G.; Yu, L.; Baldino,
C. M.; McElory, E.; Brown, M. Tetrahedron Lett 2005, 46, 1241.
[13] Moore, J. A.; Sutherland, G. J.; Sowerby, R.; Kelly, E. G.;
Palermo, S.; Webster, W. J Org Chem 1969, 34, 887.
[14] Su, W.; Yang, B. Aust J Chem 2002, 55, 695.
[15] Shi, D.; Rong, L.; Wang, J.; Zhuang, Q.; Wang, X.; Hu, H.
Tetrahedron Lett 2003, 44, 3199.
[16] Sadanandam, Y. S.; Reddy, K. R. M.; Rao, A. B. Eur J Org
Chem 1987, 22, 169.
[17] Reo, V. B.; Ratnam, C. V. Indian J Chem 1979, 18B, 409.
[18] Rueping, M.; Antonchick, A. P.; Sugiono, E.; Grenader, K.
Angew Chem Int Ed Engl 2009, 48, 908.
[19] Rostamizadeh, S.; Amani, A. M.; Aryan, R.; Ghaieni, H.
R.; Shadjou, N. Synth Commun 2008, 38, 3567.
[20] Gleiter, H. Nanostruct Mater 1992, 1, 1.
[21] Chen, B. J.; Sun, X. W.; Xu, C. X. Physica E 2004, 21,
103.
3169 cmꢂ1
;
1H NMR (300 MHz, CDCl3): d ¼ 5.84 (s, 1H,
CH), 7.55 (t, J ¼ 6.0 Hz, CH), 7.76 (d, J ¼ 6.0 Hz, 1H, CH),
7.87 (m, 1H, CH), 8.02 (d, J ¼ 6.0 Hz, 2H, CH), 8.16 (d, J ¼
6.0 Hz, 1H, CH), 8.32 (d, J ¼ 6.0 Hz, 2H, CH), 12.7 (s, 1H,
NH); 13C NMR (75 MHz, DMSO-d6): d ¼ 65.5, 113.6, 118.3,
121.2, 125.9, 127.2, 127.7, 128.6, 132.5, 134.7, 136.9, 150.9,
162.1; MS (EI): m/e ¼ 249 (Mþ), 247, 119, 92, 50.
[22] Zhang, W. W.; Cao, Q. Q. J Colloid Interface Sci 2003,
257, 237.
[23] Cui, Z. L.; Dong, L. F.; Hao, C. C. Mater Sci Eng A 2000,
286, 205.
2,3-dihydro-2-(3-nitrophenyl)quinazolin-4(1H)-one (5o). This
compound was obtained as an yellow crystalline solid, mp
180–182ꢀC (Lit. mp 180 – 182 [19]), IR: 1608, 2910, 3050,
[24] Kassaee, M. Z.; Buazar, F. J Manufac Proc 2009, 11, 31.
[25] Birks, L. S.; Friedman, H. J Appl Phys 1946, 16, 687.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet