P. Muthupandi, G. Sekar / Tetrahedron Letters 52 (2011) 692–695
695
2. (a) Lipscomb, W. N.; Straeter, N. Chem. Rev. 1996, 96, 2375; (b) Jankowska, J.;
Paradowska, J.; Rakiel, B.; Mlynarski, J. J. Org. Chem. 2007, 72, 2228.
3. (a) Corey, E. J.; Lee, D. H.; Sarshar, S. Tetrahedron: Asymmetry 1995, 6, 3; (b)
Ryoda, A.; Yajima, N.; Haga, T.; Kumamoto, T.; Nakanishi, W.; Kawahata, M.;
Yamaguchi, K.; Ishikawa, T. J. Org. Chem. 2008, 73, 133; (c) Hillis, L. R.; Ronald, R.
C. J. Org. Chem. 1985, 50, 470; (d) Janice, L.; Hyatt; Stacy, V.; Wadkins, R. M.;
Yoon, K. J. P.; Wierdl, M.; Edwards, C. C.; Zeller, M.; Hunter, A. D.; Danks, M. K.;
Crundwell, G.; Potter, P. M. J. Med. Chem. 2005, 48, 5543; (e) Ita, B. I.; Offiong, O.
E. Mater. Chem. Phys. 2001, 70, 330; (f) Ams, M. R.; Wilcox, C. S. J. Am. Chem. Soc.
2007, 129, 3966.
4. (a) Kashiwabara, T.; Tanaka, M. J. Org. Chem. 2009, 74, 3958; (b) Giraud, A.;
Provot, O.; Franç J.; Peyrat, O.; Alami, M.; Brion, J. D. Tetrahedron 2006, 62, 7667;
(c) Shimakawa, Y.; Morikawa, T.; Sakaguchi, S. Tetrahedron Lett. 2010, 51, 1786;
(d) Joo, C.; Kang, S.; Kim, S. M.; Han, H.; Yang, J. W. Tetrahedron Lett. 2010, 51,
6006; (e) Khurana, J. M.; Kandpal, B. M. Tetrahedron Lett. 2003, 44, 4909. and
references cited therein.
5. (a) Tanaka, T.; Kawase, M.; Tani, S. Bioorg. Med. Chem. 2004, 12, 501; (b)
Wallace, O. B.; Smith, D. W.; Deshpande, M. S.; Polson, C.; Felsenstein, K. M.
Bioorg. Med. Chem. Lett. 2003, 13, 1203; (c) Fang, Q. K.; Han, Z.; Grover, P.;
Kessler, D.; Senanayake, C. H.; Wald, S. A. Tetrahedron: Asymmetry 2000, 11,
3659; (d) Adam, W.; Lazarus, M.; Saha-Moeller, C. R.; Schreier, P. Acc. Chem. Res.
1999, 32, 837; (e) Davis, F. A.; Chen, B. C. Chem. Rev. 1992, 92, 919.
6. For asymmetric benzoin condensations and enzymatic kinetic resolutions of
racemic benzions: (a) Dünkelmann, P. D.; Nitsche, K. A.; Demir, A. S.; Siegert, P.;
Baumann, L. B. M.; Pohl, M.; Müller, M. J. Am. Chem. Soc. 2002, 124, 12084; (b)
Enders, D.; Niemeier, O.; Balensiefer, T. Angew. Chem., Int. Ed. 2006, 45, 1463; (c)
Enders, D.; Kallfass, U. Angew. Chem., Int. Ed. 2002, 41, 1743; (d) Linghu, X.;
Johnson, J. S. Angew. Chem., Int. Ed. 2003, 42, 2534; (e) Hoyos, P.; Fernndez, M.;
Sinisterra, J. V.; Alcntara, A. R. J. Org. Chem. 2006, 71, 7632.
(OKR) of racemic benzoins using chiral zinc catalyst to obtain opti-
cally active benzoins. Achiral ligand DABCO L6 was replaced with
chiral ligands L7–L9 and the results are summarized in Table 4.
When the DABCO was replaced by 5 mol % of (R)-BINAM L7 with
5 mol % of ZnO in the presence of K2CO3, the oxidative kinetic res-
olution of racemic benzoin in toluene at 90 °C provided 0% ee for
the unreacted benzoin at 62% conversion (Table 4, entry 1). Simi-
larly, the recovered benzoin was found to be racemic mixture
when 5 mol % TEMPO was used instead of K2CO3 (entry 2). How-
ever, replacement of ZnO with 5 mol % of ZnSO4ꢀ7H2O in the pres-
ence of 5 mol % of TEMPO provided 8% ee for unreacted benzoin at
54% conversion and the selectivity (s) is 1.3. Then we replaced the
chiral ligand L7 with other chiral ligands L8 and L9. Interestingly,
when L97c was used as ligand, the unreacted benzoin was
11
obtained
with 43% ee at 64% conversion and the selectivity (s)
is 2.4 (entry 5). However, without TEMPO, the same reaction pro-
vides poor selectivity with longer reaction time. In this reaction,
R enantiomer of the racemate was oxidized faster to the corre-
sponding benzil and the slow reacting S enantiomer of benzoin
was recovered in an enantiomerically enriched form.
In conclusion, we have developed a very simple and efficient
aerobic oxidation reaction for the conversion of benzoins to benzils
using ZnO–DABCO as a catalyst. This methodology is successfully
extended to enantioselective oxidation using chiral zinc complex
as catalyst for the oxidative kinetic resolution. A detailed optimiza-
tion, mechanistic studies and substrates scope of the OKR are un-
der progress.
7. (a) Alamsetti, S. K.; Mannam, S.; Muthupandi, P.; Sekar, G. Chem. Eur. J. 2009, 15,
1086; (b) Alamsetti, S. K.; Muthupandi, P.; Sekar, G. Chem. Eur. J. 2009, 15, 5424;
(c) Muthupandi, P.; Alamsetti, S. K.; Sekar, G. Chem. Commun. 2009, 3288.
8. (a) Trost, B. M. Science 1991, 254, 1471; (b) Trost, B. M. Acc. Chem. Res. 2002, 35,
695.
9. Parkin, G. Chem. Rev. 2004, 104, 699.
10. General experimental procedure for oxidation of benzoins. A mixture of ZnO
(4.0 mg, 0.05 mmol) and 1,4-diazabicyclo[2.2.2]octane (11.2 mg, 0.1 mmol) in
5 mL of toluene was taken in a reaction tube and stirred at room temperature
for 10 min; benzoin (212 mg, 1 mmol) and K2CO3 (138 mg, 1 mmol) were then
added to the reaction mixture. The reaction was stirred under an O2
atmosphere (using O2 balloon) at 60 °C for 8 h. The reaction mixture was
concentrated and the resulting residue was purified by silica gel column
chromatography (eluents: hexanes/ethyl acetate, 95:5 v/v) to give the benzil
(208 mg, yield 99%). Yellow solid, mp: 95–96 °C (lit.1 94–95 °C). Rf 0.43;
(hexanes/ethyl acetate, 90:10 v/v): 1H NMR (400 MHz, CDCl3): d 7.95–8.01 (m,
4H), 7.66 (t, J = 7.2 Hz, 2H), 7.51 (t, J = 8.0 Hz, 4H); 13C NMR (100 MHz, CDCl3): d
194.7, 135.0, 133.1, 130.0, 129.1; IR (neat) 3064, 1656 cmꢁ1; HRMS (m/z):
[MNa]+ calcd for C14H10O2Na1, 233.0578; found, 233.0585.
Acknowledgments
We thank DST (Project No.: SR/S1/OC-06/2008), New Delhi, for
the financial support. P.M. thanks UGC, New Delhi, for senior re-
search fellowship. We thank DST, New Delhi, for the funding to-
ward the 400 MHz NMR instrument to the Department of
Chemistry, IIT-Madras, under the IRPHA scheme and ESI-MS facil-
ity under the FIST programme.
11. Typical experimental procedure for OKR. A mixture of L9 (9 mg, 0.0125 mmol)
and zinc(II)sulfate heptahydrate (3.6 mg, 0.0125 mmol) in 5 mL of toluene was
stirred at room temperature for 10 min; TEMPO (2 mg, 0.0125 mmol) was then
added to the reaction mixture. After stirring for 5 min, benzoin (53 mg,
0.25 mmol) was added and then the reaction was stirred under an O2
atmosphere (using O2 balloon) and the reaction was followed by TLC. The
conversion was measured by recording 1H NMR of crude reaction mixture. The
reaction mixture was concentrated after 64% conversion and the resulting
residue was purified by silica gel column chromatography (eluents: hexanes/
ethylacetate, 85:15 v/v) to give benzil (60%) and unreacted benzoin (34%). Rf
Supplementary data
Supplementary data (experimental procedures and character-
ization data, full spectroscopic data for all compounds, 1H NMR
and 13C NMR spectra for all the compounds, 1H NMR spectrum
for conversion calculation and HPLC spectra for % ee determina-
tion) associated with this article can be found, in the online ver-
0.26 (hexanes/ethyl acetate, 90:10 v/v); ½a 2D5
ꢂ
= 37.4 (c = 1 in acetone); 1H NMR
(400 MHz, CDCl3): d 7.89–7.95 (m, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 8.0 Hz,
2H), 7.31–7.36 (m, 4H), 7.24–7.31 (m, 1H), 5.96 (d, J = 6.0 Hz, 1H), 4.55 (m, 1H);
13C NMR (100 MHz, CDCl3): d 199.1, 139.1, 134.1, 133.6, 129.3, 128.8, 128.7,
127.9, 76.3; IR (neat) 3418, 1679, 1261, 1068 cmꢁ1; HRMS (m/z): [MNa]+ calcd
for C14H12O2Na1, 235.0735; found, 235.0727; The enantiomeric excess (%ee)
was determined to be 43% in HPLC using Daicel ChiralPAK AS-H column
(10% iPrOH/hexanes, 1 mL/min, 254 nm): tR (major, 10.6 min), tR (minor,
17.0 min).
References and notes
1. (a) Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic
Synthesis; John Wiley and Sons: New York, 2002; (b) Beller, M.; Bolm, C.
Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 2004; (c)
Yamamoto, H.; Synthesis, Lewis Acids in Organic Wiley-VCH; Weinheim, 2008.