Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC04293D
COMMUNICATION
Journal Name
9
M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely
and G. J. Hutchings, Chem. Soc. Rev., 2012, 41, 8099-8139.
leaching was observed in the spent catalyst after the
hydrogenation reaction. No evident difference was found in
NPs size for the spent catalyst compared with fresh one.
Valence states of fresh and spent catalysts (before/after
hydrogenation reaction) were determined by XPS. There is no
obvious change observed in valence distribution for spent
catalyst in contrast to the fresh one. It is known that the
presence of surface Ru4+ species facilitates the carbonyl
activation.16,23 Thus, to confirm the possible positive role of
such Ru4+ species, we performed the reduction treatment for
the fresh catalyst to remove it (Figs.S9-S10†), as a result, the
decrease of catalytic activity was observed after the catalyst’s
reduction treatment (Fig.S11†). The decreased activity when
Ru4+ is absent is due to its role of Lewis acid sites that are able
to interact with the oxygen atom of the carbonyl bond
(polarization of carbonyl),23 in the case of its presence,
improvement of hydrogenation rate would be favoured.
In conclusion, carbon supported PtRu nanoalloy catalysts
with seven different surface compositions were synthesised
and evaluated in hydrogenation of acetone. The observed
strong dependence of catalytic performance on surface
composition originates from the different catalytic properties
between the two metals and their complementary advantages
in catalysis. Similar catalysis behavior found in 3-pentanone
hydrogenation verifies the objectivity of the structure-property
relationship revealed in this study (I.e., the composition
effect), which could assist the rational design of catalyst used
in many other carbonyl compounds hydrogenation reactions
(e.g., cellulose biomass, glucose, aldehydes, carboxylic acid,
esters, etc.).
10 C. Wang, M. Chi, G. Wang, D. van der Vliet, D. Li, K. More, H.
H. Wang, A. Schlueter John, M. Markovic Nenad and R.
Stamenkovic Vojislav, Adv. Funct. Mater., 2010, 21, 147-152.
11 H.-L. Jiang and Q. Xu, J. Mater. Chem., 2011, 21, 13705-
13725.
12 Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi and H. Wang,
Chem. Rev., 2015, 115, 3433-3467.
13 S. Özkar and R. G. Finke, J. Am. Chem. Soc., 2005, 127, 4800-
4808.
14 L. S. Ott, S. Campbell, K. R. Seddon and R. G. Finke, Inorg.
Chem., 2007, 46, 10335-10344.
15 A. Balouch, A. Ali Umar, A. A. Shah, M. Mat Salleh and M.
Oyama, ACS Appl. Mater. & Interfaces, 2013, 5, 9843-9849.
16 J. Teddy, A. Falqui, A. Corrias, D. Carta, P. Lecante, I. Gerber
and P. Serp, J. Catal., 2011, 278, 59-70.
17 Y. Wang, J.-M. Zheng, K. Fan and W.-L. Dai, Green Chem.,
2011, 13, 1644-1647.
18 C. L. Bracey, P. R. Ellis and G. J. Hutchings, Chem. Soc. Rev.,
2009, 38, 2231-2243.
19 7. B.-J. Hwang, L. S. Sarma, G.-R. Wang, C.-H. Chen, D.-G.
Liu, H.-S. Sheu and J.-F. Lee, Chem.-Eur. J., 2007, 13, 6255-
6264.
20 Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng and Y.
Wang, Angew. Chem., Int. Ed., 2013, 52, 5776-5779.
21 H. Zhang, Z. Zheng, C. Ma, J. Zheng, N. Zhang, Y. Li and B. H.
Chen, ChemCatChem, 2015, 7, 245-249.
22 L. Zhu, Y. Jiang, J. Zheng, N. Zhang, C. Yu, Y. Li, C.-W. Pao, J.-L.
Chen, C. Jin, J.-F. Lee, C.-J. Zhong and B. H. Chen, Small, 2015,
11, 4385-4393.
23 Z. Yang, D. Li, L. Zhang, J. Zheng, N. Zhang and B. H. Chen,
ChemCatChem, 2017, 9, 338-346.
24 R. Alcalá, J. Greeley, M. Mavrikakis and J. A. Dumesic, J.
Chem. Phys., 2002, 116, 8973-8980.
25 J. Pardillos-Guindet, S. Metais, S. Vidal, J. Court and P.
Fouilloux, Appl. Catal., A, 1995, 132, 61-75.
26 M. De bruyn, S. Coman, R. Bota, V. I. Parvulescu, D. E. De Vos
and P. A. Jacobs, Angew. Chem., Int. Ed., 2003, 42, 5333-
5336.
Acknowledgements
The authors acknowledge financial support from the National
Key Technology Support Program of China (No.2014BAC10B01)
and National Natural Science Foundation of China
(No.21576228 and No.21673187).
27 Z. Yang, W. Chen, J. Zheng, Z. Yang, N. Zhang, C.-J. Zhong and
B. H. Chen, J. Catal., 2018, 363, 52-62.
Notes and references
1
E. Gomez, S. Kattel, B. Yan, S. Yao, P. Liu and J. G. Chen, Nat.
Commun., 2018, , 1398.
9
2
J. P. Bosco, M. P. Humbert and J. G. Chen, Design of
Heterogeneous Catalysts: From Model Surfaces to Supported
Catalysts, Wiley, 2009.
3
4
5
J.-H. Zhong, X. Jin, L. Meng, X. Wang, H.-S. Su, Z.-L. Yang, C. T.
Williams and B. Ren, Nat. Nanotechnol., 2016, 12, 132.
J. Zheng, H. Lin, Y.-n. Wang, X. Zheng, X. Duan and Y. Yuan, J.
Catal., 2013, 297, 110-118.
G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J.
Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-
Stephanopoulos and E. C. H. Sykes, Science, 2012, 335, 1209.
M. M.-J. Li, L. Ye, J. Zheng, H. Fang, A. Kroner, Y. Yuan and S.
C. E. Tsang, Chem. Commun., 2016, 52, 2569-2572.
Y. Nakagawa, K. Takada, M. Tamura and K. Tomishige, ACS
6
7
8
Catal., 2014,
R. Zheng, M. P. Humbert, Y. Zhu and J. G. Chen, Catal. Sci.
Technol., 2011, , 638-643.
4, 2718-2726.
1
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins