42
J. Bedia et al. / Journal of Catalysis 271 (2010) 33–42
[13] J. Rodríguez-Mirasol, J. Bedia, T. Cordero, J.J. Rodríguez, Sep. Sci. Technol. 40
(2005) 3113.
[14] J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, Fuel 88 (2009) 19.
[15] C.A. Leon y Leon, L.R. Radovic, in: P.A. Thrower (Ed.), Chemistry and Physics of
Carbon, M. Dekker, New York, 1992, pp. 213–310.
[16] G.S. Szyman´ ski, G. Rychlicki, Carbon 31 (1993) 247.
[17] C. Moreno-Castilla, F. Carrasco-Marín, C. Parejo-Pérez, M.V. López Ramón,
Carbon 39 (2001) 869.
[18] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfao, Carbon 37 (1999)
1379.
phorus groups with a high thermal stability that remain in the car-
bon surface.
The TPD–CO profiles are mainly characterized by a considerable
amount of CO desorbed at high temperatures (T > 700 °C) associ-
ated to the decomposition of the CAOAPO3 and CAPO3 groups
formed during the activation process. The surface acidity of the
carbons, determined by NH3–TPD, seems to be related to the phos-
phorus retained on the carbon surface. Irreversible adsorption of
organic bases, such as pyridine and 2,6-dimethyl pyridine, suggests
the presence of Brönsted acid sites.
[19] J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, Ind. Eng. Chem. Res. 47
(2008) 1288.
[20] E. González-Serrano, T. Cordero, J. Rodríguez-Mirasol, L. Cotoruelo, J.J.
Rodríguez, Water Res. 38 (2004) 3043.
Conversion of 2-propanol yields only dehydration products and
is highly selective to propylene, with very low amounts of di-iso-
propyl ether observed only at low conversion values. Kinetic inter-
pretation of the experimental data was performed using two
elimination mechanisms; an E1 mechanism (two-step mechanism)
and an E2 mechanism (one-step mechanism). The rate expressions
derived from both models represent properly the experimental re-
sults, suggesting that probably the two mechanisms occur simulta-
neously. This supposition is supported by the similar rate constant
obtained for the rate-determining step of both models, formation
of the carbocation in E1 mechanism and formation of the propyl-
ene in the E2 mechanism. The activation energy of the rds of both
models is very similar, nearly 98 kJ/mol. This fact indicates that
formation of the carbocation through and E1 mechanism and for-
mation of the propylene by an E2 mechanism occur at a very sim-
ilar rate, and, therefore, it is probably that both mechanisms take
place simultaneously. Furthermore, the FTIR spectrum of the car-
bon C1-450 after reaction with 2-propanol suggests the coexis-
tence of at least two adsorbed species, one undissociated as 2-
propanol molecules and the other one dissociated forming isoprop-
oxide–carbocation species.
[21] X. Wu, L.R. Radovic, Carbon 44 (2006) 151.
[22] P.J. Hall, J.M. Calo, Energy Fuels 3 (1989) 370.
[23] A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D.
Tascón, Carbon 43 (2005) 2857.
[24] J. Coates, in: R.A. Meyers (Ed.), Interpretation of Infrared Spectra, A Practical
Approach, John Wiley & Sons Ltd., Chichester, 2000, pp. 10815–10837.
[25] J. Zawadzki, in: P.A. Thrower (Ed.), Infrared Spectroscopy in Surface Chemistry
of Carbons, Marcel Dekker, New York, 1989, pp. 147–386.
[26] P. Vinke, M. van der Eijk, M. Verbree, A.F. Voskamp, H. van Bekkum, Carbon 32
(1994) 675.
[27] M.S. Solum, R.J. Pugmire, M. Jagtoyen, F. Derbyshire, Carbon 33 (1995) 1247.
[29] L.J. Bellamy, The Infra-red Spectra of Complex Molecules, Wiley, New York,
1954.
[30] D.E.C. Corbridge, J. Appl. Chem. 6 (1956) 456.
[31] G. Socrates, Infrared Characteristic Group Frequencies, Wiley, New York, 1994.
[32] R. Xie, B. Qu, K. Hu, Polym. Degrad. Stab. 72 (2001) 313.
[33] S. Bourbigot, M. Le Bras, R. Delobel, Carbon 33 (1995) 283.
[34] F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, A.A. Romero, M.R.
Urbano, J. Catal. 172 (1997) 103.
[35] H.A. Benesi, J. Catal. 28 (1973) 176.
[36] H. Knözinger, H. Krietenbrink, P. Ratnasamy, J. Catal. 48 (1977) 436.
[37] A. Corma, C. Rodellas, V. Fornes, J. Catal. 88 (1984) 374.
[38] M.H. Healy, L.F. Wieserman, E.A. Arnett, K. Wefers, Langmuir 5 (1989) 114.
[39] A. Travert, O.V. Manoilova, A.A. Tsyganenko, F. Maugé, J.C. Lavalley, J. Phys.
Chem. B 106 (2002) 1350.
[40] G. Turnes Palomino, J.J. Cuart Pascual, M. Rodríguez Delgado, J. Bernardo Parra,
C. Otero Areán, Mater. Chem. Phys. 85 (2004) 145.
[41] P.A. Jacobs, C.F. Heylen, J. Catal. 34 (1974) 267.
Acknowledgments
[42] C. Petit, F. Maugé, J.C. Lavalley, Stud. Surf. Sci. Catal. 106 (1997) 157.
[43] A.A. Tsyganenko, E.N. Storozheva, O.V. Manoilova, T. Lesage, M. Daturi, J.C.
Lavalley, Catal. Lett. 70 (2000) 159.
[44] C. Morterra, G. Cerrato, G. Meligrana, Langmuir 17 (2001) 7053.
[45] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in: J. Chastain, R.C. King Jr.
(Eds.), Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics
Inc., Eden Prairie, MN, 1995, pp. 4872–4875.
The authors thank Ministry of Science and Education of Spain
(DGICYT, Projects CTQ2006/11322 and CTQ2009-14262). J.B.
acknowledges the assistance of the Ministry of Science and Educa-
tion of Science and Education of Spain for the award of a FPI Grant.
[46] D.E. Meras, Chem. Eng. Sci. 26 (1971) 1361.
[47] C.N. Satterfield, Heterogeneous Catalysis in Practice, McGraw-Hill, New York,
1991.
[48] J.A. Moulijn, A. Tarfaoui, F. Kapteijn, Catal. Today 11 (1991) 1.
[49] H. Gierman, Appl. Catal. 43 (1988) 277.
References
[1] C. Branca, P. Giudicianni, C . Di Blasi, Ind. Eng. Chem. Res. 43 (2003) 3190.
[2] A.E. Pütün, A. Özcan, H.F. Gerçel, E. Pütün, Fuel 8 (2001) 1371.
[3] J.D. Adjaye, S.P.R. Katikaneni, N.N. Bakhshi, Fuel Process. Technol. 48 (1996)
115.
[4] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado, J. Bilbao, Ind. Eng. Chem. Res.
43 (2004) 2610.
[5] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado, M. Olazar, J. Bilbao, Ind. Eng.
Chem. Res. 43 (2004) 2619.
[6] J.M. Campelo, A. Garcia, J.F. Herencia, D. Luna, J.M. Marinas, A.A. Romero, J.
Catal. 151 (1995) 307.
[50] K. Levenberg, Q. Appl. Math. 2 (1944) 164.
[51] D. Marquardt, SIAM J. Appl. Math. 11 (1963) 431.
[52] M.A. Aramendia, V. Borau, C. Jiménez, J.M. Marinas, A. Porras, F.J. Urbano, J.
Catal. 161 (1996) 829.
[53] W. Turek, J. Haber, A. Krowiak, Appl. Surf. Sci. 252 (2005) 823.
[54] P. Trens, V. Stathopoulos, M.J. Hudson, P. Pomonis, Appl. Catal. A 263 (2004)
103.
[55] R.M. Rioux, M.A. Vannice, J. Catal. 216 (2003) 362.
[56] M. Boudart, D.E. Meras, M.A. Vannice, Ind. Chem. Belge 32 (1967) 281.
[57] M.A. Vannice, S.H. Hyun, B. Kalpalci, W.C. Liauh, J. Catal. 56 (1979) 358.
[58] J.A. Deon, Lange’s Handbook of Chemistry, 15th ed., McGraw-Hill, New York,
1999. p. 6.42.
[7] J. Bedia, J. Márquez, J. Rodríguez-Mirasol, T. Cordero, Carbon 47 (2009) 286.
[8] H. Koempel, W. Liebner, Stud. Surf. Sci. Catal. 167 (2007) 261–267.
[9] L.R. Radovic, F. Rodríguez-Reinoso, in: P.A. Thrower (Ed.), Chemistry and
Physics of Carbon, vol. 25, Marcel Dekker, New York, 1997, pp. 243–358.
[10] R.W. Coughlin, Ind. Eng. Chem. Prod. Res. Develop. 8 (1964) 23.
[59] J. Zawadzki, M. Wisniewski, J. Weber, O. Heintz, B. Azambre, Carbon 39 (2001)
187.
[60] J.L. Davis, M.A. Barteau, Surf. Sci. 235 (1990) 235.
[61] R.F. Rossi, G. Busca, V. Lorenzelli, O. Saur, J.C. Lavalley, Langmuir 3 (1987) 52.
´
[11] F. Rodriguez-Reinoso, M. Molina-Sabio, Carbon 30 (1992) 1111.
[12] O. Ioannidou, A. Zabaniotou, Renew Sustain Energy Rev 11 (2007) 1966.