ChemSusChem
10.1002/cssc.201902590
FULL PAPER
Sele. (%)
research funds from Hubei Key Laboratory of Pollutant Analysis
Entry
Oxidant
Conv. (%)
&
Reuse Technology (Hubei Normal University).
DFF
MA
43
78
24
46
15
57
42
PA
6
1
Air
100
100
45
28
-
[
b]
2
3
4
5
6
7
O
2
10
-
Keywords: Renewable phthalic anhydride • 5-
N
2
36
-
Hydroxymethfurfural• Oxidation • Diels-Alder reaction
O
O
O
O
2
2
2
2
100
100
100
100
18
56
26
24
[
[
[
c]
-
1
.
.
S. Giarola, C. Romain, C. K. Williams, J. P. Hallett and N. Shah, Chemical
Engineering Research and Design, 2016, 107, 181-194.
C. Mahendiran, T. Maiyalagan, P. Vijayan, C. Suresh and K. Shanthi,
Reaction Kinetics, Mechanisms and Catalysis, 2011, 105, 469-481.
d]
-
b][c]
11
2
[
a] Reaction conditions:
5
mmol HMF,
5
mmol
H
2
SO
4
10 wt% catalyst (mass ratio of
3. C. R. Dias, M. F. Portela, G. C. Bond, Journal of Catalysisl. 1995, 157, 353-
358.
MoO /Cu(NO ) was controlled as 1:1), 40 ml mixed solvent of water and acetonitrile (33:7), 90
3
3
2
o
4. P. Eversfield, W. Liu and E. Klemm, Catalysis Letters, 2017, 147, 785-791.
2 2 4 2 4
C, 8 h, atmospheric pressure; [b] 0.1 Mpa O ; [c] 4.5 mmol H SO acid; [d] 4 mmol H SO acid;
5.
6.
7.
C. M. Park and R. J. Sheehan, Phthalic Acids and Other
Benzenepolycarboxylic Acids, John Wiley & Sons, Inc., 2000.
B. Rindone, F. Saliu and R. Suarez-Bertoa, Ozone: Science & Engineering,
2010, 32, 161-165.
G. Bignardi, F. Cavani, C. Cortelli, T. De Lucia, F. Pierelli, F. Trifirò, G.
Mazzoni, C. Fumagalli and T. Monti, Journal of Molecular Catalysis A:
Chemical, 2006, 244, 244-251.
Conclusions
8
.
.
A. F. Sousa, C. Vilela, A. C. Fonseca, M. Matos, C. S. R. Freire, G.-J. M.
Gruter, J. F. J. Coelho and A. J. D. Silvestre, Polymer Chemistry, 2015, 6,
5961-5983.
B. Imre and B. Pukánszky, European Polymer Journal, 2013, 49, 1215-
1
In summary, we demonstrated for the first time a highly efficient
protocol for directly synthesizing renewable PA from HMF through
an one-pot procedure mediated by MoO /Cu(NO ) . With
3 3 2
characteristics of green and sustainable feedstock, commonly
available catalysts, mild reaction temperature and high yield of
product, the pathway put forward in this study realized the
integration of multistep (decarbonylation of HMF to AFI, oxidation
of HMF to MA, D-A cycloaddition of AFI and MA and subsequent
9
233.
10. E. Mahmoud, D. A. Watson and R. F. Lobo, Green Chem., 2014, 16, 167-
75.
1
11. V. V. Guliants and M. A. Carreon, 2005, 18, 1-45.
12. E R. Nielsen, Industrial & Engineering Chemistry, 1949, 41 (2): 365-368.
13. N. Alonso-Fagundez, M. L. Granados, R. Mariscal and M. Ojeda,
ChemSusChem, 2012, 5, 1984-1990.
14. J. Lan, Z. Chen, J. Lin, Green Chemistry, 2014, 16 (9): 4351-4358.
2 2 4
dehydration) into one pot with the assistance of O and H SO .
15. X. Li, B. Ho and Y. Zhang, Green Chemistry, 2016, 18, 2976-2980.
1
1
1
6. X. Li and Y. Zhang, Green Chemistry, 2016, 18, 643-647.
7. Z. Du, J. Ma, F. Wang, J. Liu and J. Xu, Green Chemistry, 2011, 13, 554.
8. J. Lan, J. Lin, Z. Chen and G. Yin, ACS Catalysis, 2015, 5, 2035-2041.
The process in detail consisted of the initial oxidation of HMF to
DFF, followed by the direct oxidation of DFF to MA and indirect
oxidation of DFF to MA via intermediate AFI. Subsequently, the
active intermediate related to ODA was formed by the crucial D-
A cycloaddition of AFI and MA. Eventually, PA was generated by
the following dehydration. The catalyst system played a vital role
in making the efficient conversion of HMF to PA possible. Under
a mild reaction condition, PA yield of 63.2 % was obtained. This
convenient one-pot synthesis pathway exhibits great potential to
produce renewable PA in a cost-competitive fashion compared to
the current multistep synthesis approach.
19. T. Ishida, K. Kume, K. Kinjo, ChemSusChem, 2016, 9 (24): 3441-3447.
20. W. Zhang, Y. Zhu, S. Niu and Y. Li, Journal of Molecular Catalysis A:
Chemical, 2011, 335, 71-81.
21. S. Thiyagarajan, H. C. Genuino, M. Sliwa, J. C. van der Waal, E. de Jong,J.
van Haveren, B. M. Weckhuysen, P. C. Bruijnincx and D. S. van Es,
ChemSusChem, 2015, 8, 3052-3056.
2
2. W. Jia, J. Du, H. Liu, Y. Feng, Y. Sun, X. Tang, X. Zeng and L. Lin, Journal
of Chemical Technology & Biotechnology, doi.org/10.1002/jctb.6179.
3. H. Berndt, A. Martin, A. Brückner, E. Schreier, D. Müller, H. Kosslick, G.
U. Wolf and B. Lücke, Journal of Catalysis, 2000, 191, 384-400.
2
24. F. Bertinchamps, M. Treinen, P. Eloy, A. M. Dos Santos, M. M. Mestdagh
and E. M. Gaigneaux, Applied Catalysis B: Environmental, 2007, 70,
3
60-369.
5. S. Otto and J. B. F. N. Engberts, Pure & Applied Chemistry, 2000, 72,
365-1372.
6. L.L. Thomas, J. Tiradorives and W. L. Jorgensen, Journal of the American
Chemical Society, 2010, 132, 3097-3104.
2
2
2
2
1
Experimental Section
7. S. Otto and J. B. F. N. Engberts, Pure and Applied Chemistry, 2000, 72,
1365-1372.
Synthesis procedures of PA form HMF, analysis of PA can be found in
Supplemental Information.
8. L. L. Thomas, J. Tirado-Rives, W L. Jorgensen, Journal of the American
Chemical Society, 2010, 132 (9): 3097-3104.
2
3
9. R. Breslow, Accounts of Chemical Research, 1991, 24 (6): 159-164.
0. J. Sauer, Angewandte Chemie International Edition in English, 1967, 6 n
(
1): 16-33.
31. G. Lv, S. Chen, H. Zhu, M. Li, Y. Yang, Journal of cleaner production, 2018,
96, 32-41.
Acknowledgements
1
3
2. Y. M. Li, X. H. Wei, X. A. Li and S. D. Yang, Chem Commun (Camb),2013,
49, 11701-11703.
This work was supported by the National Natural Science Fund of
China (Nos. 21978246, 21776234), the Fundamental Research
Funds for the Central Universities of China (20720190127), the
33. R B. Mackenzie, C T. Dewberry, K R. Leopold, Science, 2015, 349 (6243) :
58-61.
This article is protected by copyright. All rights reserved.