Page 5 of 7
ACS Catalysis
2009, 48, 8729-8732. (d) Schulz, T.; Torborg, C.; Schäffner, B.;
Huang, J.; Zapf, A.; Kadyrov, R.; Börner, A.; Beller, M. Practical Im-
idazole-Based Phosphine Ligands for Selective Palladium-Catalyzed
Hydroxylation of Aryl Halides. Angew. Chem., Int. Ed. 2009, 48, 918-
921. (e) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L.
The Selective Reaction of Aryl Halides with KOH:ꢀ Synthesis of Phe-
nols, Aromatic Ethers, and Benzofurans. J. Am. Chem. Soc. 2006,
128, 10694-10695. (f) Bal, R.; Tada, M.; Sasaki, T.; Iwasawa, Y. Di-
rect Phenol Synthesis by Selective Oxidation of Benzene with Molec-
ular Oxygen on an Interstitial-N/Re Cluster/Zeolite Catalyst. Angew.
Chem., Int. Ed. 2006, 45, 448-452. (g) Niwa, S.-i.; Eswaramoorthy,
M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A
One-Step Conversion of Benzene to Phenol with a Palladium Mem-
brane. Science 2002, 295, 105-107. For a review, see: (h) George, T.;
Mabon, R.; Sweeney, G.; Sweeney, J. B.; Tavassoli, A. Alcohols,
Ethers and Phenols. J. Chem. Soc., Perkin Trans. 1 2000, 2529-2574.
(5) For selected examples, see: (a) Paul, A.; Chatterjee, D.; Rajkamal;
Halder, T.; Banerjee, S.; Yadav, S. Metal Free Visible Light Photore-
dox Activation of PhI(OAc)2 for the Conversion of Arylboronic Acids
to Phenols. Tetrahedron Lett. 2015, 56, 2496-2499. (b) Guo, S.; Lu,
L.; Cai, H. Base-Promoted, Mild and Highly Efficient Conversion of
Arylboronic Acids into Phenols with tert-Butyl Hydroperoxide. Syn-
lett 2014, 24, 1712-1714. (c) Cheng, G.; Zeng, X.; Cui, X. Benzoqui-
none-Promoted Aerobic Oxidative Hydroxylation of Arylboronic Ac-
ids in Water. Synthesis 2014, 46, 0295-0300. (d) Ding, W.; Chen, J.-
R.; Zou, Y.-Q.; Duan, S.-W.; Lu, L.-Q.; Xiao, W.-J. Aerobic Oxida-
tive C–B Bond Cleavage of Arylboronic Acids Mediated by
Methylhydrazines. Org. Chem. Front. 2014, 1, 151-154. (e) Gogoi, P.;
Bezboruah, P.; Gogoi, J.; Boruah, R. C. ipso-Hydroxylation of Aryl-
boronic Acids and Boronate Esters by Using Sodium Chlorite as an
Oxidant in Water. Eur. J. Org. Chem. 2013, 7291-7294. (f) Chen, D.-
S.; Huang, J.-M. A Mild and Highly Efficient Conversion of Aryl-
boronic Acids into Phenols by Oxidation with MCPBA. Synlett 2013,
24, 0499-0501. (g) Zhu, C.; Wang, R.; Falck, J. R. Mild and Rapid
Hydroxylation of Aryl/Heteroaryl Boronic Acids and Boronate Esters
with N-Oxides. Org. Lett. 2012, 14, 3494-3497. (h) Prakash, G. K. S.;
Chacko, S.; Panja, C.; Thomas, T. E.; Gurung, L.; Rasul, G.; Mathew,
T.; Olah, G. A. Regioselective Synthesis of Phenols and Halophenols
1
2
3
4
5
6
7
8
Experimental details and characterization data. This material is
*sm@iisc.ac.in
*anshup@iisc.ac.in
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The authors declare no competing financial interests.
This work is funded by Council of Scientific and Industrial Re-
search (CSIR), New Delhi [Grant No. 02(0207)/14/EMR-II], Sci-
ence and Engineering Research Board (SERB), New Delhi [Grant
No. EMR/2016/005045] and Nano Mission [Grant No.
SR/NM/NS-1117/2012]. Spectroscopic studies were performed on
equipment purchased under an IRHPA grant [IR/S2/PU-
0005/2012]. A.K.S. thanks CSIR and B.B. thanks IISc Bangalore
for their respective doctoral fellowships. We are thankful to Mr.
Guru Pratheep Rajasekar and Ms. Arpita Mukherjee (Solid State
and Structural Chemistry Unit, IISc Bangalore) for their help with
some parts of ultrafast studies. Special thanks to Prof. M. Kevin
Brown (Department of Chemistry, Indiana University, USA) for a
gift of the precursor of compound 3.
(1) (a) Pal, A.; Ghosh, I.; Sapra, S.; König, B. Quantum Dots in Visible-
Light Photoredox Catalysis: Reductive Dehalogenations and C–H Ar-
ylation Reactions Using Aryl Bromides. Chem. Mater. 2017, 29,
5225-5231. (b) Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye, C.; Li, X.-
B.; Chen, B.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. Photocatalysis
with Quantum Dots and Visible Light: Selective and Efficient Oxida-
tion of Alcohols to Carbonyl Compounds through a Radical Relay
Process in Water. Angew. Chem., Int. Ed. 2017, 56, 3020-3024. (c)
Caputo, J. A.; Frenette, L. C.; Zhao, N.; Sowers, K. L.; Krauss, T. D.;
Weix, D. J. General and Efficient C–C Bond Forming Photoredox Ca-
talysis with Semiconductor Quantum Dots. J. Am. Chem. Soc. 2017,
139, 4250-4253. (d) Zhang, Z.; Edme, K.; Lian, S.; Weiss, E. A. En-
hancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon
Coupling by Tuning the Composition of the Dot’s Ligand Shell. J.
Am. Chem. Soc. 2017, 139, 4246-4249. (e) Jensen, S. C.; Bettis
Homan, S.; Weiss, E. A. Photocatalytic Conversion of Nitrobenzene
to Aniline through Sequential Proton-Coupled One-Electron Transfers
from a Cadmium Sulfide Quantum Dot. J. Am. Chem. Soc. 2016, 138,
1591-1600. For a review, see: (f) Kisch, H. Semiconductor Photoca-
talysis for Chemoselective Radical Coupling Reactions. Acc. Chem.
Res. 2017, 50, 1002-1010.
(2) Kamat, P. V. Semiconductor Surface Chemistry as Holy Grail in
Photocatalysis and Photovoltaics. Acc. Chem. Res. 2017, 50, 527-531.
(3) (a) Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant
Polyphenols: Chemical Properties, Biological Activities, and Synthe-
sis. Angew. Chem., Int. Ed. 2011, 50, 586-621. (b) Rappoport, Z. The
Chemistry of Phenols; Wiley-VCH: Weinheim, 2003. (c) Tyman, J.
H. P. Synthetic and Natural Phenols; Elsevier: New York, 1996.
(4) For selected methods, see: (a) Han, J. W.; Jung, J.; Lee, Y.-M.; Nam,
W.; Fukuzumi, S. Photocatalytic Oxidation of Benzene to Phenol Us-
ing Dioxygen as an Oxygen Source and Water as an Electron Source
in the Presence of a Cobalt Catalyst. Chem. Sci. 2017, 8, 7119-7125.
(b) Molander, G. A.; Cavalcanti, L. N. Oxidation of Organotri-
fluoroborates Via Oxone. J. Org. Chem. 2011, 76, 623-630. (c) Zhao,
D.; Wu, N.; Zhang, S.; Xi, P.; Su, X.; Lan, J.; You, J. Synthesis of
Phenol, Aromatic Ether, and Benzofuran Derivatives by Copper-
Catalyzed Hydroxylation of Aryl Halides. Angew. Chem., Int. Ed.
from
Arylboronic
Acids
Using
Peroxide
Solid
and
Poly(N-
Poly(4-
Vinylpyrrolidone)/Hydrogen
Vinylpyridine)/Hydrogen Peroxide Complexes. Adv. Synth. Catal.
2009, 351, 1567-1574. (i) Kianmehr, E.; Yahyaee, M.; Tabatabai, K.
A Mild Conversion of Arylboronic Acids and Their Pinacolyl Boro-
nate Esters into Phenols Using Hydroxylamine. Tetrahedron Lett.
2007, 48, 2713–2715.
(6) (a) Gunasekaran, N. Aerobic Oxidation Catalysis with Air or Molecu-
lar Oxygen and Ionic Liquids. Adv. Synth. Catal. 2015, 357, 1990-
2010. (b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent Advanc-
es in Transition Metal Catalyzed Oxidation of Organic Substrates with
Molecular Oxygen. Chem. Rev. 2005, 105, 2329-2364. (c) Stahl, S. S.
Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemi-
cals by Direct Dioxygen-Coupled Turnover. Angew. Chem., Int. Ed.
2004, 43, 3400-3420.
(7) (a) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.;
Jørgensen, K. A.; Xiao, W.-J. Highly Efficient Aerobic Oxidative Hy-
droxylation of Arylboronic Acids: Photoredox Catalysis Using Visible
Light. Angew. Chem., Int. Ed. 2012, 51, 784-788. For other reports on
oxidative hydroxylation of aryl boronic acids under photoredox catal-
ysis, see: (b) Toyao, T.; Ueno, N.; Miyahara, K.; Matsui, Y.; Kim, T.-
H.; Horiuchi, Y.; Ikedaab, H.; Matsuoka, M. Visible-Light, Photore-
dox Catalyzed, Oxidative Hydroxylation of Arylboronic Acids Using
a
Metal–Organic
Framework
Containing
Tetrakis(Carboxyphenyl)Porphyrin Groups. Chem. Commun. 2015,
51, 16103-16106. (c) Yu, X.; Cohen, S. M. Photocatalytic Metal–
Organic Frameworks for the Aerobic Oxidation of Arylboronic Acids.
Chem. Commun. 2015, 51, 9880-9883. (d) Johnson, J. A.; Luo, J.;
Zhang, X.; Chen, Y.-S.; Morton, M. D.; Echeverría, E.; Torres, F. E.;
Zhang, J. Porphyrin-Metalation-Mediated Tuning of Photoredox Cata-
lytic Properties in Metal–Organic Frameworks. ACS Catal. 2015, 5,
5283-5291. (e) Luo, J.; Zhang, X.; Zhang, J. Carbazolic Porous Or-
ganic Framework as an Efficient, Metal-Free Visible-Light Photocata-
lyst for Organic Synthesis. ACS Catal. 2015, 5, 2250-2254. (f) Pitre,
S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. Mechanistic In-
5
ACS Paragon Plus Environment