Please do not adjust margins
Page 7 of 9
Journal of Materials Chemistry A
Journal Name
ARTICLE
Assuming three electrons were needed to produce one NH3 15. M. A. Shipman and M. D. Symes, Catal. Today, 2017, 286, 57–
DOI: 10.1039/C8TA01078A
molecule, the Faradaic efficiency can be calculated as follows:
68.
16. J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen and L. Dai, Angew.
Chem. Int. Ed., 2016, 128, 2270–2274.
V
Faradaic efficiency 3F c
(6)
NH
3
17Q
17. X. Liu, W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S.
Park, A. Casimir and G. Wu, Adv. Funct. Mater., 2015, 25, 5799–
5808.
where F is the Faraday constant and V is the volume of
electrolyte.
18. V. Beermann, M. Gocyla, E. Willinger, S. Rudi, M. Heggen, R.
E. Dunin-Borkowski, M.-G. Willinger, and P. Strasser, Nano Lett.,
2016, 16, 1719–1725.
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgements
19. X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie
and Y. Xia, Nano Lett., 2016, 16, 1467–1471.
20. L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao and Z. Zhu,
Adv. Mater., 2017, 29, 1606793.
The authors gratefully acknowledge the financial support from the
National Natural Science Foundation of China (No. 21471028 and
No. 21671036), National Key Basic Research Program of China
(No. 2013CB834802), Changbai Mountain Scholarship, Natural
Science Foundation of Jilin Province (No. 20150101064JC),
21. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132,
13612–13614.
22. Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown
and X. Yao, Adv. Mater., 2016, 28, 9532–9538.
23. C. Hu and L. Dai, Adv. Mater., 2017, 29, 1604942.
24. Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo,
M. Hong, X. Yan and G. Qian, Adv. Mater., 2017, 29, 1700017.
25. Y. Zheng, Y. Jiao , M. Jaroniec , Y. G. Jin and S. Z. Qiao, Small,
2012, 8, 3550–3566.
the central university basic scientific research funds
(No.
2412017BJ004) and the Fundamental Research Funds for the
Central Universities (No. 2412015KJ012).
26. Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. J. Du, W. M.
Zhang, Z. H. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu and S. Z.
Qiao, J. Am. Chem. Soc., 2011, 133, 20116–20119.
27. Y. Jiao, Y. Zheng, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc.,
2014, 136, 4394−4403.
28. T. Y. Ma, J. L. Cao, M. Jaroniec and S. Z. Qiao, Angew. Chem.
Int. Ed., 2016, 55, 1138 –1142.
29. H. B. Zhang, J. W. Nai, L. Yu and X. W. Lou, Joule, 2017, 1,
77–107.
30. B. Y. Guan, X. Y. Yu, H. B. Wu and X. W. Lou, Adv. Mater.,
2017, 29, 1703614.
31. L. Yu, H. Hu, H. B. Wu and X. W. Lou, Adv. Mater., 2017, 29,
1604563.
32. B. Y. Guan, Y. Lu, Y. Wang, M. H. Wu and X. W. Lou, Adv.
Funct. Mater., 2018, 28, 1706738.
33. X. Zhang, R. Liu, Y. Zang, G. Liu, G. Wang, Y. Zhang, H.
Zhang and H. Zhao, Chem. Commun., 2016, 52, 5946–5949.
34. J. Zhang and L. Dai, Angew. Chem. Int. Ed., 2016, 128, 13490–
13494.
Notes and references
1. Y. Jiao,Y. Zheng, M. Jaroniecb and S. Z. Qiao, Chem. Soc. Rev.,
2015, 44, 2060−2086.
2. J. Li, Y. J. Song, G. X. Zhang, H. Y. Liu, Y. R. Wang, S. H. Sun
and Xi. W. Guo, Adv. Funct. Mater., 2017, 27, 1604356.
3. F. L. Meng, Z. L. Wang, H. X. Zhong, Jun. Wang, J. M. Yan, and
X. B. Zhang, Adv. Mater., 2016, 28, 7948–7955.
4. G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. G.
Zhang, H. L. Wang and L. M. Dai, Nano Energy, 2016, 29, 83–
110.
5. C. Dong, T. Kou, H. Gao, Z. Peng and Z. Zhang, Adv. Energy
Mater., DOI: 10.1002/aenm.201701347.
6. C. Bai, S. Wei, D. Deng, X. Lin, M. Zheng and Q. Dong, J. Mater.
Chem. A, 2017, 5, 9533–9536.
7. F. L. Meng, H. X. Zhong, J. M. Yan and X. B. Zhang, Nano Res.,
2017, 10, 4436–4447.
8. J. B. Zhu, M. L. Xiao,Y. L. Zhang, Z. Jin, Z. Q. Peng, C. P. Liu, S.
L. Chen, J. J. Ge and W. Xing, ACS Catal., 2016, 6, 6335−6342.
9. D. Aurbach, B. D. McCloskey, L. F. Nazar and P. G. Bruce, Nat.
Energy, 2016, 1, 16128.
10. Q. Liu, Y. Wang, L. Dai and J. Yao, Adv. Mater., 2016, 28,
3000–3006.
11. Y. Liu, F. Chen, W. Ye, M. Zeng, N. Han, F. Zhao, X. Wang and
Y. Li, Adv. Funct. Mater., 2017, 27, 1606034.
35. A. Allwar, M. Noor and M. A. M. Nawi, J Phys Sci, 2008, 19,
93–104.
36. Y. Hou, B. Zhang, Z. H. Wen, S. M. Cui, X. R. Guo, Z. He and
J. H. Chen, J. Mater. Chem. A, 2014, 2, 13795–13800.
37. Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang, M. Zhu, Z. Wang
and C. Zhi, Energy Environ. Sci., 2017, 10, 742–749.
38. J. Liang, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int.
Ed., 2012, 51, 11496–11500.
39. D. H Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J.
Nakamura, Science, 2016, 351, 361–365.
40. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H.
Dai, Nat. Mater., 2011, 10, 780–786.
12. K. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N.
Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C.
Seefeldt and P. W. King, Science, 2016, 352, 448–450.
13. S. Licht, B. C. Cui, B. H. Wang, F. F. Li, J. Lau and S. Z. Liu,
Science, 2014, 345, 637–640.
14. C. X. Guo, J. R. Ran, A.Vasileff and S. Z. Qiao, Energy Environ.
Sci., 2018, 11, 45–56.
41. P. Chen, T. Xiao, Y. Qian, S. Li and S. Yu, Adv. Mater., 2013,
25, 3192–3196.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins