P. S. Kumar, K. M. Lokanatha Rai/Chemical Papers 66 (8) 772–778 (2012)
777
Table 2. Reduction of p-nitrophenol to p-amino phenol (Fig. 1)
using zinc and aqueous ethers (ϕr = 1 : 4)
Chemical Reviews, 73, 21–52. DOI: 10.1021/cr60281a003.
Hazlet, S. E., & Dornfeld, C. A. (1944). The reduction of
aromatic nitro compounds with activated iron. Journal
of the American Chemical Society, 66, 1781–1782. DOI:
10.1021/ja01238a049.
Ho, T. L., & Wang, C. M. (1974). Reduction of aromatic nitro
compounds by titanium(III) chloride. Synthesis, 1974, 45.
DOI: 10.1055/s-1974-23246.
Entry
1
Ether
Yielda/%
88
Johnstone, R. A. W., Willby, A. H., & Entwistle, I. D. (1985).
Heterogeneous catalytic transfer hydrogenation and its rela-
tion to other methods of reduction of organic compounds.
Chemical Reviews, 85, 129–170. DOI: 10.1021/cr00066a003.
Khan, F. A., Dash, J., Sudheer, C., & Gupta, R. K. (2003).
Chemoselective reduction of aromatic nitro and azo com-
pounds in ionic liquids using zinc and ammonium salts.
Tetrahedron Letters, 44, 7783–7787. DOI: 10.1016/j.tetlet.
2003.08.080.
2
86
3
4
88
85
5
6
87
85
Kijima, M., Nambu, Y., Endo, T., & Okawara, M. (1984). Selec-
tive reduction of monosubstituted nitrobenzenes to anilines
by dihydrolipoamide-iron(II). Journal of Organic Chemistry,
49, 1434–1436. DOI: 10.1021/jo00182a023.
Liu, Y., Lu, Y., Prashad, M., Repic, O., & Blacklock, T.
J. (2005). A practical and chemoselective reduction of ni-
troarenes to anilines using activated iron. Advanced Synthe-
sis and Catalysis, 347, 217–219. DOI: 10.1002/adsc.200404
236.
7
3
a) Isolated yield.
Conclusions
Lyle, R. E., & Lamittina, J. L. (1974). Selective hydrogenation
of 2,6-dinitroanilines. Synthesis, 1974, 726–727.
O’Neil, M. J. (2006a). Merck Index (pp. 659). Whitehouse Sta-
tion, NY, USA: Merck Research Laboratories.
O’Neil, M. J. (2006b). Merck Index (pp. 462). Whitehouse Sta-
tion, NY, USA: Merck Research Laboratories.
O’Neil, M. J. (2006c). Merck Index (pp. 7284). Whitehouse Sta-
tion, NY, USA: Merck Research Laboratories.
O’Neil, M. J. (2006d). Merck Index (pp. 2118). Whitehouse Sta-
tion, NY, USA: Merck Research Laboratories.
O’Neil, M. J. (2006e). Merck Index (pp. 9536). Whitehouse Sta-
tion, NY, USA: Merck Research Laboratories.
By using zinc in aqueous solutions of chelating di-
ethers, an environmentally benign, efficient, simple,
economical, and chemo-selective method for the re-
duction of aromatic nitro compounds to amino com-
pounds was reported. This method is suitable for use
with other reducible groups and the yield of the reac-
tion is not affected by the structure of the ether.
Acknowledgements. The authors express their gratitude to
the FMC Corporation for providing the opportunity and sup-
port for them to do this work.
O’Neil, M. J. (2006f). Merck Index (pp. 6398). Whitehouse Sta-
tion, NY, USA: Merck Research Laboratories.
References
Onopchenko, A., Sabourin, E. T., & Selwitz, C. M. (1979).
Selective catalytic hydrogenation of aromatic nitro groups
in the presence of acetylenes. Synthesis of (3-aminophenyl)
acetylene via hydrogenation of (3-nitrophenyl)acetylene over
cobalt polysulfide and ruthenium sulfide catalysts. Journal of
Organic Chemistry, 44, 3671–3674. DOI: 10.1021/jo01335a
011.
Popp, F. D., & Schultz, H. P. (1962). Electrolytic reduction
of organic compounds. Chemical Reviews, 62, 19–40. DOI:
10.1021/cr60215a002.
Ram, S., & Ehernkaufer, R. E. (1984). A general procedure
for mild and rapid reduction of aliphatic and aromatic nitro
compounds using ammonium formate as a catalytic hydro-
gen transfer agent. Tetrahedron Letters, 25, 3415–3418. DOI:
10.1016/s0040-4039(01)91034-2.
Abiraj, K., Srinivasa, G., & Gowda, D. C. (2005). Palladium-
catalyzed simple and efficient hydrogenative cleavage of
azo compounds using recyclable polymer-supported for-
mate. Canadian Journal of Chemistry, 83, 517–520. DOI:
10.1139/v05-071.
Ashley, J. N., Berg, S. S., & MacDonald, R. D. (1960). The
search for chemotherapeutic amidines. Part XVI. Amidino-
anilino-1,3,5-triazines and related compounds. Journal of the
Chemical Society, 1960, 4525–4532. DOI: 10.1039/jr9600004
525.
Bellamy, F. D., & Ou, K. (1984). Selective reduction of aromatic
nitro compounds with stannous chloride in non acidic and
non aqueous medium. Tetrahedron Letters, 25, 839–842. DOI:
10.1016/s0040-4039(01)80041-1.
Rinderknecht, H., Koechlin, H., & Niemann, C. (1953). Oxin-
dolylalanine. Journal of Organic Chemistry, 18, 971–982.
DOI: 10.1021/jo50014a011.
Sarmah, P., & Dutta, D. K. (2003). Manganese mediated aque-
ous reduction of aromatic nitro compounds to amines. Jour-
nal of Chemical Research, 2003, 236–237. DOI: 10.3184/030
823403103173624.
Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic
liquid (molten salt) phase organometallic catalysis. Chemical
Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.
Dyson, P. J., Ellis, D. J., Welton, T., & Parker, D. G. (1999).
Arene hydrogenation in a room-temperature ionic liquid us-
ing a ruthenium cluster catalyst. Chemical Communications,
1999, 25–26. DOI: 10.1039/a807447j.
Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemi-
cal Communications, 2001, 2399–2407. DOI: 10.1039/
b107270f.
Simpson, J. C. E., Atkinson, C. M., Schofield, K., & Stephen-
son, O. (1945). o-Amino-ketones of the acetophenone and
Gowda, D., Mahesh, B., & Shankare, G. (2001). Zinc-catalyzed
ammonium-formate reductions: Reduction of nitro com-
pounds. Indian Journal of Chemistry Section B, 40, 75–77.
Harmon, R. E., Gupta, S. K., & Brown, D. J. (1973). Hydro-
genation of organic compounds using homogeneous catalysts.