150
K.L. Deutsch, B.H. Shanks / Applied Catalysis A: General 447–448 (2012) 144–150
functionality of anisole, guaiacol, 2-methoxy-4-methylphenol, and
vanillyl alcohol, which has not been commonly observed with
other HDO catalysts. Minimal demethylation and transalkylation
were observed in the reactions with CuCr2O4·CuO likely due to
the relatively low acidity of the support compared to alumina
and zeolites. Phenolic and methoxy groups were also found to
activate the aromatic ring towards hydrogenation. The deoxy-
genation of phenols occurred via hydrogenation, dehydration and
hydrogenation to form cyclohexane derivatives. The dehydration
of the cyclohexanol derivatives was rate limiting step of this
HDO process. The use of higher reaction temperatures and lower
pressures may increase the formation of aromatics from phenols
by favoring dehydrogenation. Overall, it was found that copper
catalysts exhibit unique reaction selectivities and networks for the
HDO of aromatic hydroxyl and methoxy groups when compared
to conventional sulphided catalysts and supported noble metal
catalysts.
[14] T.R. Viljava, E.R.M. Saari, A.O.I. Krause, Appl. Catal. A: Gen. 209 (2001) 33–43.
[15] T.R. Viljava, R.S. Komulainen, A.O.I. Krause, Catal. Today 60 (2000) 83–92.
[16] A. Centeno, E. Laurent, B. Delmon, J. Catal. 154 (1995) 288–298.
[17] E. Laurent, B. Delmon, Appl. Catal. A: Gen. 109 (1994) 77–96.
[18] E. Laurent, B. Delmon, J. Catal. 146 (1994) 281–291.
[19] E. Laurent, B. Delmon, Appl. Catal. A: Gen. 109 (1994) 97–115.
[20] S.B. Gevert, M. Eriksson, P. Eriksson, F.E. Massoth, Appl. Catal. A: Gen. 117 (1994)
151–162.
[21] E. Laurent, B. Delmon, Ind. Eng. Chem. Res. 32 (1993) 2516–2524.
[22] J.B.S. Bredenberg, M. Huuska, J. Raty, M. Korpio, J. Catal. 77 (1982) 242–247.
[23] H. Weigold, Fuel 61 (1982) 1021–1026.
[24] S.J. Hurff, M.T. Klein, Ind. Eng. Chem. Fundam. 22 (1983) 426–430.
[25] E.O. Odebunmi, D.F. Ollis, J. Catal. 80 (1983) 56–64.
[26] R.K.M.R. Kallury, T.T. Tidwell, D.G.B. Boocock, D.H.L. Chow, Can. J. Chem. 62
(1984) 2540–2545.
[27] M. Huuska, J. Rintala, J. Catal. 94 (1985) 230–238.
[28] R.K.M.R. Kallury, W.M. Restivo, T.T. Tidwell, D.G.B. Boocock, A. Crimi, J. Douglas,
J. Catal. 96 (1985) 535–543.
[29] F.P. Petrocelli, M.T. Klein, Ind. Eng. Chem. Prod. Res. Dev. 24 (1985) 635–641.
[30] B.S. Gevert, J.E. Otterstedt, F.E. Massoth, Appl. Catal. 31 (1987) 119–131.
[31] J.B. Bredenberg, M. Huuska, P. Toropainen, J. Catal. 120 (1989) 401–408.
[32] P. Toropainen, J.B. Bredenberg, Appl. Catal. 52 (1989) 57–68.
[33] V.A. Yakovlev, S.A. Khromova, O.V. Sherstyuk, V.O. Dundich, D.Y. Ermakov, V.M.
Novopashina, M.Y. Lebedev, O. Bulavchenko, V.N. Parmon, Catal. Today 144
(2009) 362–366.
Acknowledgements
[34] A. Gutierrez, R.K. Kaila, M.L. Honkela, R. Slioor, A.O.I. Krause, Catal. Today 147
(2009) 239–246.
[35] A. Popov, E. Kondratieva, J.M. Goupil, L. Mariey, P. Bazin, J.P. Gilson, A. Travert,
F. Mauge, J. Phys. Chem. C 114 (2010) 15661–15670.
[36] C.R. Lee, J.S. Yoon, Y.W. Suh, J.W. Choi, J.M. Ha, D.J. Suh, Y.K. Park, Catal. Commun.
17 (2012) 54–58.
[37] C. Sepulveda, K. Leiva, R. Garcia, L.R. Radovic, I.T. Ghampson, W.J. DeSisto, J.L.G.
Fierro, N. Escalona, Catal. Today 172 (2011) 232–239.
This work was supported by National Science Foundation PIRE
(OISE 0730227) and ERC (EEC-0813570). We would like to acknowl-
edge Ann Perera of the W.M. Keck Metabolomics Research Lab on
ISU campus for her assistance with interpreting some of the product
mass spectra.
[38] K.L. Li, R.J. Wang, J.X. Chen, Energy Fuels 25 (2011) 854–863.
[39] H.Y. Zhao, D. Li, P. Bui, S.T. Oyama, Appl. Catal. A: Gen. 391 (2011) 305–310.
[40] S. Crossley, J. Faria, M. Shen, D.E. Resasco, Science 327 (2010) 68–72.
[41] X.L. Zhu, L.L. Lobban, R.G. Mallinson, D.E. Resasco, J. Catal. 281 (2011)
21–29.
[42] T. Nimmanwudipong, R.C. Runnebaum, D.E. Block, B.C. Gates, Energy Fuels 25
(2011) 3417–3427.
[43] R.C. Runnebaum, T. Nimmanwudipong, D.E. Block, B.C. Gates, Catal. Lett. 141
(2011) 779–783.
[44] E.J. Shin, M.A. Keane, J. Catal. 173 (1998) 450–459.
[45] E.J. Shin, M.A. Keane, Ind. Eng. Chem. Res. 39 (2000) 883–892.
[46] E.E. Harris, J. D’Ianni, H. Adkins, J. Am. Chem. Soc. 60 (1938) 1467–1470.
[47] H.Y. Zheng, J. Yang, Y.L. Zhu, G.W. Zhao, React. Kinet. Catal. L. 82 (2004)
263–269.
[48] H.Y. Zheng, Y.L. Zhu, L. Huang, Z.Y. Zeng, H.J. Wan, Y.W. Li, Catal. Commun. 9
(2008) 342–348.
[49] H.Y. Zheng, Y.L. Zhu, B.T. Teng, Z.Q. Bai, C.H. Zhang, H.W. Xiang, Y.W. Li, J. Mol.
Catal. A: Chem. 246 (2006) 18–23.
References
[1] E. Furimsky, Appl. Catal. A: Gen. 199 (2000) 147–190.
[2] D.C. Elliott, Energy Fuel 21 (2007) 1792–1815.
[3] P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, Appl.
Catal. A: Gen. 407 (2011) 1–19.
[4] D.A. Bulushev, J.R.H. Ross, Catal. Today 171 (2011) 1–13.
[5] T.V. Choudhary, C.B. Phillips, Appl. Catal. A: Gen. 397 (2011) 1–12.
[6] K. Sipila, E. Kuoppala, L. Fagernas, A. Oasmaa, Biomass Bioenerg. 14 (1998)
103–113.
[7] J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev. 110
(2010) 3552–3599.
[8] A.L. Jongerius, R. Jastrzebski, P.C.A. Bruijnincx, B.M. Weckhuysen, J. Catal. 285
(2012) 315–323.
[9] C.V. Loricera, B. Pawelec, A. Infantes-Molina, M.C. Alvarez-Galvan, R. Huirache-
Acuna, R. Nava, J.L.G. Fierro, Catal. Today 172 (2011) 103–110.
[10] M. Badawi, J.F. Paul, S. Cristol, E. Payen, Catal. Commun. 12 (2011) 901–905.
[11] Y. Romero, F. Richard, S. Brunet, Appl. Catal. B: Environ. 98 (2010) 213–223.
[12] A. Pinheiro, D. Hudebine, N. Dupassieux, C. Geantet, Energy Fuels 23 (2009)
1007–1014.
[50] Y.L. Zhu, H.W. Xiang, Y.W. Li, H.J. Jiao, G.S. Wu, B. Zhong, G.Q. Guo, New J. Chem.
27 (2003) 208–210.
[51] K.L. Deutsch, B.H. Shanks, J. Catal. 285 (2012) 235–241.
[52] C. Moreau, J. Joffre, C. Saenz, P. Geneste, J. Catal. 122 (1990) 448–451.
[53] H. Adkins, S.H. Watkins, J. Am. Chem. Soc. 73 (1951) 2184–2188.
[13] O.I. Senol, E.M. Ryymin, T.R. Viljava, A.O.I. Krause, J. Mol. Catal. A: Chem. 277
(2007) 107–112.