H.W. Park et al. / Applied Catalysis A: General 409–410 (2011) 167–173
173
summarized that Pd/ACA-H3PO4-1.0 catalyst was more efficient
than Pd/AC and Pd/AC-H3PO4-1.0 catalysts in the decomposition
4-phenoxyphenol to aromatics.
[2] M. Stocker, Angew. Chem. Int. Ed. 47 (2008) 9200–9211.
[3] C.N. Hamelinck, G. Hooijdonk, A.P. Faaij, Biomass Bioenergy 28 (2005) 384–410.
[4] A. Demiras, Energy Convers. Manage. 42 (2001) 1357–1378.
[5] H.H. Nimz, R. Casten, Holz Roh-Werkstoff 44 (1986) 207–212.
[6] M. Kleinert, T. Barth, Chem. Eng. Technol. 31 (2008) 736–745.
[7] H.L. Jairo, G.G. Wolfgang, J. Polym. Envrion. 10 (2002) 39–48.
[8] A. Oasmaa, R. Alen, Bioresour. Technol. 45 (1993) 189–194.
[9] M. Kleinert, T. Barth, Energy Fuels 22 (2008) 1371–1379.
[10] R.W. Thring, J. Breau, Fuel 75 (1996) 795–800.
4. Conclusions
Carbon aerogel was activated using different amount H3PO4
(ACA-H3PO4-X, X = 0, 0.5, 1.0, 2.0, and 3.0). Palladium catalyst sup-
ported on activated carbon aerogel (Pd/ACA-H3PO4-X, X = 0, 0.5,
1.0, 2.0, and 3.0) were prepared by an incipient wetness impreg-
nation method, and were applied to the decomposition of lignin
model compound. 4-Phenoxyphenol was used as a dimeric lignin
model compound for representing 4-O-5 bond in lignin. Conversion
of 4-phenoxyphenol and total yield for main products (cyclohex-
anol, benzene, and phenol) over Pd/ACA-H3PO4-X (X = 0, 0.5, 1.0,
2.0, and 3.0) were in the range of 37.4–62.4% and 28.7–49.9%,
respectively. Among the main products produced by the decom-
position of 4-phenoxyphenol, yield for cyclohexanol (15.2–24.1%)
was much higher than that for benzene (9.1–18.8%) and phenol
(4.4–7.0%). Conversion of 4-phenoxyphenol and total yield for main
products were closely related to the average palladium particle
size of Pd/ACA-H3PO4-X (X = 0, 0.5, 1.0, 2.0, and 3.0). Conversion
of 4-phenoxyphenol and total yield for main products increased
with decreasing average palladium particle size of Pd/ACA-H3PO4-
X. Among the catalysts tested, Pd/ACA-H3PO4-1.0 with the smallest
average palladium particle size showed the highest conversion of 4-
phenoxyphenol (62.4%) and total yield for main products (49.9%).
Conversion of 4-phenoxyphenol and total yield for main product
over Pd/ACA-H3PO4-1.0 were much higher than those over palla-
dium catalyst supported on commercial activated carbon (Pd/AC).
It is concluded that Pd/ACA-H3PO4-X (X = 0, 0.5, 1.0, 2.0, and 3.0)
was an efficient catalyst in the decomposition of 4-phenoxyphenol
to aromatics, and average palladium particle size of the catalysts
played an important role in determining the catalytic performance.
[11] D.C. Elliott, Energy Fuels 21 (2007) 1792–1815.
[12] P.F. Britt, A.C. Buchanan, M.J. Cooney, D.R. Martineau, J. Org. Chem. 65 (2000)
1376–1389.
[13] C. Amen-Chen, H. Pakdel, C. Roy, Bioresour. Technol. 79 (2001) 277–299.
[14] D.J. Engel, K.Z. Steigleder, US Patent 4647704 (1987).
[15] J.B. Binder, M.J. Gray, J.F. White, Z.C. Zhang, J.E. Holladay, Biomass Bioenergy 33
(2009) 1122–1130.
[16] D.V. Evtuguin, A.I.D. Daniel, A.J.D. Silvestre, F.M.L. Amad, C.P. Neto, J. Mol. Catal.
A: Chem. 154 (2000) 217–224.
[17] H.W. Park, S. Park, D.R. Park, J.H. Choi, I.K. Song, Catal. Commun. 12 (2010) 1–4.
[18] H.W. Park, S. Park, D.R. Park, J.H. Choi, I.K. Song, Korean J. Chem. Eng. 28 (2010)
1177–1180.
[19] A. Cyr, F. Chilts, P. Jeanson, A. Martel, L. Brossard, J. Lessard, H. Menard, Can. J.
Chem. 78 (2000) 307–315.
[20] N. Yan, C. Zhao, P.J. Dyson, C. Wang, L.-T. Liu, Y. Kou, ChemSusChem 1 (2008)
626–629.
[21] M.T. Klein, P.S. Virk, Ind. Eng. Chem. Fundam. 22 (1983) 35–45.
[22] P.F. Britt, M.K. Kidder, A.C. Buchanan, Energy Fuels 21 (2007) 3102–3108.
[23] P.F. Britt, A.C. Buchanan, E.A. Malcolm, J. Org. Chem. 60 (1995) 6523–6536.
[24] B. Mahdavi, A. Lafrance, A. Martel, J. Lessard, H. Menard, J. Appl. Electrochem.
27 (1997) 605–611.
[25] P. Dabo, A. Cyr, J. Lessard, L. Brossard, H. Menard, Can. J. Chem. 77 (1999)
1225–1229.
[26] B. Fang, L. Binder, J. Power Source 163 (2006) 616–622.
[27] C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon 43 (2005) 455–465.
[28] Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Curr.
Appl. Phys. 11 (2011) 1–5.
[29] Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Korean J.
Chem. Eng. 28 (2011) 492–496.
[30] Y.J. Lee, J.C. Jung, J. Yi, S.-H. Baeck, J.R. Yoon, I.K. Song, Curr. Appl. Phys. 10 (2010)
682–686.
[31] Y. Hanzawa, K. Kaneko, Langmuir 12 (1996) 6167–6169.
[32] K. Kohler, R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, Chem. Eur. J. 8 (2002)
622–631.
[33] S.K. Ling, H.Y. Tian, S. Wang, T. Rufford, Z.H. Zhu, C.E. Buckley, J. Colloid Interface
Sci. 357 (2011) 157–162.
[34] C. Schmit, H. Probstle, J. Fricke, J. Non Cryst. Solids 285 (2001) 277–282.
[35] J.G. Seo, M.H. Youn, K.M. Cho, S. Park, S.H. Lee, J. Lee, I.K. Song, Korean J. Chem.
Eng. 25 (2008) 41–45.
Acknowledgements
[36] A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche-Bensemra, A. Hellal, J.
Hazard. Mater. B 119 (2005) 189–194.
[37] S. Zhang, R. Fu, D. Wu, W. Xu, W. Ye, Q. Ye, Z. Chen, Carbon 42 (2004)
3209–3216.
[38] P. Kim, H. Kim, J.B. Joo, W. Kim, I.K. Song, J. Yi, J. Power Sources 145 (2005)
139–146.
This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (MEST) (NRF-
2009-C1AAA001-0093292)
References
[39] M. Koyama, Bioresour. Technol. 44 (1993) 209–215.
[40] A.K. Talukdar, K.G. Bhattacharyya, Appl. Catal. A: Gen. 96 (1993) 229–239.
[41] U.G. Hong, J. Lee, S. Hwang, I.K. Song, Catal. Lett. 141 (2011) 332–338.
[1] P. McKendry, Bioresour. Technol. 83 (2002) 47–54.