148
E.H. de Faria et al. / Catalysis Today 187 (2012) 135–149
Table 8
Amount of -caprolactone obtained (%) by Baeyer–Villiger oxidation of cyclohexanone by 30 and 60 wt.% H2O2 using the indicated catalysts.a
Oxidant
2 h
4 h
24 h
30% H2O2
60% H2O2
30% H2O2
60% H2O2
30% H2O2
60% H2O2
Catalyst
Ka-pa
Fe(pa)3
Fe(Ka-pa)-3
Fe(Ka-pa)-3 A.T.b
Fe(Ka-pa)-3 WBzc
–
38.0
21.0
–
–
55.0
38.0
–
–
59.0
27.0
–
–
65.0
43.0
–
–
68.0
33.0
–
–
79.0
60.0
–
–
–
–
–
–
–
Ka-dpa
Fe(dpa)3
Fe(Ka-dpa)-3
Fe(Ka-dpa)-3 A.T.b
Fe(Ka-pa)-3 WBz.c
–
22.0
12.0
–
–
33.0
31.0
–
–
28.0
14.0
–
–
53.0
39.0
–
–
40.0
24.0
–
–
68.0
45.0
–
–
–
–
–
–
–
a
Conditions: catalyst/oxidant/cyclohexane = 20 mg catalyst, 176 L H2O2, 850 L benzonitrile, acetonitrile:dichloroethane: ACN/DCE (1:1, v/v). All the reactions were
conducted at 60 ◦C and ambient pressure. The stoichiometric ratio (number of moles) of peroxide was maintained; only the concentration of water in the system was varied.
b
Reactions were conducted at ambient temperature and pressure.
Reactions were conducted without benzonitrile, which was substituted by a mixture ACN/DCE (1:1, v/v).
c
iron-picolinate-kaolinite catalysts is proposed in Fig. 10. In the case
of the electrophilic activation of the substrate, the acid sites in
iron-picolinate-kaolinite catalysts, as well as electron withdrawing
substituents, are able to activate the carbonyl group in cyclohex-
anone, thereby enhancing the polarizability of the C O double
bond, which in turn facilitates the nucleophilic attack of H2O2. The
peroxide thus bonded to Fe cations is able to oxidize benzonitrile
to peroxycarboximidic acid intermediate, which in turn can inter-
make a catalyst efficient for the Baeyer–Villiger reaction is its abil-
ity to increase the nucleophilicity of the peroxide, this activation
promotes higher affinity of the oxidant for electron deficient cen-
ters [24,34–38], as is the case of the carbonyl group immobilized
by its interaction with the picolinate-kaolinite system.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] Ullmann’s Encyclopedia of Industrial Chemistry, 7th edition, Wiley-VCH Verlag,
Weinheim, 2005.
[2] G. Centi, S. Peranthoner, Microporous Mesoporous Mater. 107 (2008) 3–15.
[3] Z.L. Lu, E. Lindner, H.A. Mayer, Chem. Rev. 102 (2002) 3543–3578.
[4] M. Álvaro, B. Ferrer, H. Garcia, A. Sanjuán, Tetrahedron 55 (1999) 11895–11902.
[5] R.D. Dewhurst, A.F. Hill, M.K. Smith, Angew. Chem. Int. Ed. 43 (2004) 476–478.
[6] J.R. Ruiz, C. Jiménez-Sanchidrián, R. Llamas, Tetrahedron 62 (2007)
11697–11703.
[7] R.A. Reziq, D. Avnir, I. Miloslavski, H. Schumann, J. Blum, J. Mol. Catal. A: Chem.
185 (2002) 179–185.
[8] A.P.M. Wight, E. Davis, Chem. Rev. 102 (2002) 3589–3614.
[9] Z.L. Lu, E. Lindner, H. Mayer, Chem. Rev. 102 (2002) 3543–3578.
[10] A. Godelitsas, D. Charistos, C. Tsipis, P. Misaelides, A. Filippidis, M. Schindler,
Microporous Mesoporous Mater. 61 (2003) 69–77.
[11] M. Hartmann, L. Kevan, Chem. Rev. 99 (1999) 635–663.
[12] R. Bechara, D. Balloy, J. Dauphin, J. Grimblot, Chem. Mater. 11 (1999)
1703–1711.
[13] J.M. Thomas, R. Raja, Catal. Today 117 (2006) 22–31.
[14] L.R.D. da Silva, L.C. Garla, Quim. Nova 2 (1998) 169–174.
[15] A.N. Pour, Y. Zamani, A. Tavasoli, S.M.K. Shahri, S.A. Taheri, Fuel 87 (2008)
2004–2012.
[16] V.H. Deshpande, D.E. Ponde, V.J. Bulbule, A. Sudalai, A.S. Gajare, J. Org. Chem.
63 (1998) 1058–1063.
[17] S. Letaïef, B. Casal, P. Aranda, M.A. Martín-Luengo, E. Ruiz-Hitzky, Appl. Clay Sci.
22 (2003) 263–277.
[18] S. Nakagaki, F.L. Benedito, F. Wypych, J. Mol. Catal. A: Chem. 217 (2004)
121–131.
[19] O.A.C. Antunes, M.C. Esmelindro, E.G. Oestreicher, H. Marquéz-Alvarez, C.
Dariva, S.M.S. Egues, C. Fernandes, A.J. Bortoluzzi, V. Drago, J. Inorg. Biochem.
99 (2005) 2054–2061.
[20] K.C. Gupta, A.K. Sutar, Coord. Chem. Rev. 252 (2008) 1420–1450.
[21] J.E. Gardolinsky, G. Lagaly, Clay Miner. 40 (2005) 547–566.
[22] J. Murakami, T. Itagaki, K. Kuroda, Solid State Ionics 172 (2004) 279–282.
[23] P.T. Anastas, M.M. Kirchhoff, T.C.A. Williamsom, Catalysis A 221 (2001) 3–13.
[24] R.L. Frost, J. Kristof, E. Horvat, J.T. Kloprogge, Spectrochim. Acta. A 56 (2000)
1191–1204.
4. Conclusions
Kaolinite covalently grafted with picolinate and dipicolinate
anions proved to be viable supports for the effective immobiliza-
tion of iron by forming complexes. The catalytic results obtained for
the complexes covalently grafted into the basal space of kaolinite
demonstrated that these catalysts perform well in cis-cyclooctene
and cyclohexane oxidation, their activities are similar to those dis-
played by the corresponding homogeneous complexes. In the case
of cyclohexane oxidation, the catalysts Fe(Ka-dpa)-n are efficient
and highly selective, which is attributed to the presence of a kaoli-
nite tubular phase. Compared to the parent homogeneous catalysts,
the heterogeneous catalysts were advantageous with respect to
cis-cyclooctene and cyclohexane oxidation reactions since they
allowed for the use of mild conditions (temperature and ambient
pressure, use of non-polluting oxidants) and promoted high activity
and product selectivity. The main advantage of the kaolinite grafted
complexes is their easy separation from the reaction mixture by
simple filtration of the solid, thus enabling catalyst reuse.
[25] N. Bizaia, E.H. de Faria, G.P. Ricci, P.S. Calefi, E.J. Nassar, K.A.D.F. Castro, S.
Nakagaki, K.J. Ciuffi, R. Trujillano, M.A. Vicente, A. Gil, S.A. Korili, Appl. Mater.
Interface 11 (2009) 2667–2678.
Acknowledgments
[26] P. Gómez-Romero, C. Sanchez, New J. Chem. 29 (2005) 57–58.
[27] E.H. de Faria, O.J. Lima, K.J. Ciuffi, E.J. Nassar, M.A. Vicente, R. Trujillano, P.S.
Calefi, J. Colloid Interface Sci. 335 (2009) 210–215.
[28] L.R. Ávila, E.H. de Faria, K.J. Ciuffi, E.J. Nassar, P.S. Calefi, M.A. Vicente, R. Trujil-
lano, J. Colloid Interface Sci. 341 (2010) 186–193.
[29] E.H. de Faria, K.J. Ciuffi, E.J. Nassar, M.A. Vicente, R. Trujillano, P.S. Calefi, Appl.
Clay Sci. 48 (2010) 516–521.
[30] S.L. Jain, P. Bhattacharyya, Inorg. Chim. Acta 359 (2006) 4398–4402.
[31] A. Goti, F. Cardona, Green Chem. React. (2008) 191–212.
[32] S. Nakagaki, F. Wypych, J. Colloid Interface Sci. 315 (2007) 142–157.
Spanish authors thank financial support from Spanish Ministry
of Science and Innovation (MICINN) and the European Regional
Development Fund (FEDER) through projects MAT2010-21177-
C02, and Junta de Castilla y León (SA009A11-2). The Brazilian
group thanks support from Brazilian Research funding agencies
FAPESP and CNPq, and Peróxidos do Brasil (Solvay) for supplying
the 70 wt.% aqueous hydrogen peroxide solution.