Organic Letters
Letter
contrast, low conversion was achieved when TMSCl was used
instead of Cp2ZrCl2 (20% conversion).
ACKNOWLEDGMENTS
■
We are grateful to Yumi Asai, Satoko Sasaki, Eri Ena, Nao
Shibuguchi, and Naoki Asai (Eisai Co. Ltd.) for analytical
support.
a
Scheme 2. Cr−Ligand Catalyzed Desulfonylation of 5
REFERENCES
■
(1) For the original isolation and structural elucidation of
halichondrins, see: (a) Uemura, D.; Takahashi, K.; Yamamoto, T.;
Katayama, C.; Tanaka, J.; Okumura, Y.; Hirata, Y. J. Am. Chem. Soc.
1985, 107, 4796. (b) Hirata, Y.; Uemura, D. Pure Appl. Chem. 1986,
58, 701. Total synthesis of halichondrin B, see: (c) Aicher, T. D.;
Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.;
Matelich, M. C.; Scola, P. M.; Spero, D. M.; Yoon, S. K. J. Am. Chem.
Soc. 1992, 114, 3162.
a
The yield was determined by HPLC.
To evaluate the generality of the Cr−ligand−Mn-mediated
reduction system, we investigated various α-sulfur-substituted
ketones.22 Reductive cleavage of α-(phenylthio), α-(phenyl-
sulfinyl), and α-(phenylsulfonyl) groups (9a−c) proceeded
smoothly in the Cr−ligand−Mn system to give corresponding
cyclohexanone 10 in good yield (Table 4). In addition, 9c
underwent catalytic desulfonylation in >99% yield.
(2) Lin, N. U.; Burstein, H. J. Lancet 2011, 377, 878 and references
therein.
(3) (a) Towle, M. J.; Salvato, K. A.; Budrow, J.; Wels, B. F.;
Kuznetsov, G.; Aalfs, K. K.; Welsh, S.; Zheng, W.; Seletsky, B. M.;
Palme, M. H.; Habgood, G. J.; Singer, L. A.; DiPietro, L. V.; Wang, Y.;
Chen, J. J.; Quincy, D. A.; Davis, A.; Yoshimatsu, K.; Kishi, Y.; Yu, M.
J.; Littlefield, B. A. Cancer Res. 2001, 61, 1013. (b) Wang, Y.; Habgood,
G. J.; Christ, W. J.; Kishi, Y.; Littlefield, B. A.; Yu, M. J. Bioorg. Med.
Chem. Lett. 2000, 10, 1029. (c) Seletsky, B. M.; Wang, Y.; Hawkins, L.
D.; Palme, M. H.; Habgood, G. J.; DiPietro, L. V.; Towle, M. J.;
Salvato, K. A.; Wels, B. F.; Aalfs, K. K.; Kishi, Y.; Littlefield, B. A.; Yu,
M. J. Bioorg. Med. Chem. Lett. 2004, 14, 5547. (d) Zheng, W.; Seletsky,
B. M.; Palme, M. H.; Lydon, P. J.; Singer, L. A.; Chase, C. E.; Lemelin,
C. A.; Shen, Y.; Davis, H.; Tremblay, L.; Towle, M. J.; Salvato, K. A.;
Wels, B. F.; Aalfs, K. K.; Kishi, Y.; Littlefield, B. A.; Yu, M. J. Bioorg.
Med. Chem. Lett. 2004, 14, 5551.
(4) Austad, B. C.; Benayoud, F.; Calkins, T. L.; Campagna, S.; Chase,
C. E.; Choi, H.-W.; Christ, W.; Costanzo, R.; Cutter, J.; Endo, A.;
Fang, F. G.; Hu, Y.; Lewis, B. M.; Lewis, M. D.; McKenna, S.; Noland,
T. A.; Orr, J. D.; Pesant, M.; Schnaderbeck, M. J.; Wilkie, G. D.; Abe,
T.; Asai, N.; Asai, Y.; Kayano, A.; Kimoto, Y.; Komatsu, Y.; Kubota,
M.; Kuroda, H.; Mizuno, M.; Nakamura, T.; Omae, T.; Ozeki, N.;
Suzuki, T.; Takigawa, T.; Watanabe, T.; Yoshizawa, K. Synlett 2013,
24, 327.
Table 4. Cr−Ligand−Mn-Mediated Desulfonylation of
Various α-Sulfur-Substituted Ketones 9a−c
a
entry
X
method
yield of 10 (%)
1
2
3
4
SPh (9a)
A
A
A
B
85
SOPh (9b)
SO2Ph (9c)
SO2Ph (9c)
85
>99
>99
a
Yield of 10 was determined using crude reaction solution by GC in
external standard method.
(5) Chase, C. E.; Fang, F. G.; Lewis, B. M.; Wilkie, G. D.;
Schnaderbeck, M. J.; Zhu, X. Synlett 2013, 24, 323.
In summary, during the course of process research on
eribulin mesylate (Halaven), a novel and practical Cr−ligand−
Mn-mediated reduction system has been developed. This novel
approach is applicable to reductive cleavage of sulfur groups in
α-sulfur-substituted ketones. We expect that this system will be
useful for the total synthesis of natural products and
pharmaceuticals with complicated structures such as that of
eribulin mesylate.
(6) (a) Chiba, H.; Tagami, K. J. Synth. Org. Chem. Jpn. 2011, 69, 600.
(b) Austad, B. C.; Calkins, T. L.; Chase, C. E.; Fang, F. G.;
Horstmann, T. E.; Hu, Y.; Lewis, B. M.; Niu, X.; Noland, T. A.; Orr, J.
D.; Schnaderbeck, M. J.; Zhang, H.; Asakawa, N.; Asai, N.; Chiba, H.;
Hasebe, T.; Hoshino, Y.; Ishizuka, H.; Kajima, T.; Kayano, A.;
Komatsu, Y.; Kubota, M.; Kuroda, H.; Miyazawa, M.; Tagami, K.;
Watanabe, T. Synlett 2013, 24, 333.
(7) Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 1135.
(8) Wan, Z.-K.; Choi, H.-W.; Kang, F.-A.; Nakajima, K.; Demeke, D.;
Kishi, Y. Org. Lett. 2002, 4, 4431.
(9) Austad, B.; Chase, C. E.; Fang, F. G. WO 2005118565, 2005.
(10) Namba, K.; Kishi, Y. J. Am. Chem. Soc. 2005, 127, 15382.
(11) Chi, H.-W.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.;
Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435.
(12) We have already reported a part of these studies, see: Inanaga
K.; Kubota, M.; Kayano, A.; Tagami, K. PCT Int. Appl.
WO2009064029, 2009.
(13) We investigated desulfonylation of 5 with some metals or
amalgams such as Zn, Zn-Cu, Mg-MeOH, and lithium naphthalenide.
Only lithium naphthalenide gave product 4 in good yield (88%). The
others were very low conversion or decomposition. Lithium
naphthalenide was needed for cryogenic conditions, and lithium
naphthalenide itself had problems handling SmI2.
(14) Both the combination of CrCl2 and Mn, and 7 and Mn resulted
in no reaction.
(15) Review of Cr(II) mediated reactions, see: (a) Furstner, A. Chem.
Rev. 1999, 99, 991. (b) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details and analytical data. The Supporting
AUTHOR INFORMATION
■
Corresponding Authors
Author Contributions
§T.F. and K.T. contributed equally to this work.
̈
Notes
The authors declare no competing financial interest.
(c) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407.
C
Org. Lett. XXXX, XXX, XXX−XXX