Paper
Catalysis Science & Technology
of H2O2. No analysis of the gas phase products has been
forthcoming.
3 (a) M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs
and R. A. Schoonheydt, J. Am. Chem. Soc., 2005, 127, 1394;
(b) P. J. Smeets, R. G. Hadt, J. S. Woertink, P. Vanelderen,
R. A. Schoonheydt, B. F. Sels and E. I. Solomon, J. Am. Chem.
Soc., 2010, 132, 14736.
In the current case, analysis of the gas-phase analytes
reveals production of significant quantities of CO2. For exam-
ple, the reaction of methane with 4, 1000 equiv. of H2O2 and
a HNO3 : catalyst ratio of 20 produces 70 2 μmol of methanol
and 3650 μmol of CO2. A control experiment using CuIJNO3)2
·2.5H2O in place of 3a–b or 4 revealed only minor changes on
the product distribution suggesting that, in this instance and
in the presence of such a large excess of H2O2, the ligand
sphere has very limited control on the catalytic pathway
(Table 3, entry 4). Any comment on the reaction mechanism,
or speculation that these catalysts are playing a role other
than generating peroxide radicals in situ, is unwarranted
based on the current data.
4 Y. L. An, D. An, Q. Zhang and Y. Wang, J. Phys. Chem. C,
2008, 112, 13700.
5 (a) P. Haack and C. Limberg, Angew. Chem., Int. Ed.,
2014, 53, 4282; (b) P. Haack, A. Kärgel, C. Greco, J. Dokic, B.
Braun, F. F. Pfaff, S. Mebs, K. Ray and C. Limberg, J. Am.
Chem. Soc., 2013, 135, 16148; (c) P. Haack, C. Limberg, K.
Ray, B. Braun, U. Kuhlmann, P. Hildebrandt and C. Herwig,
Inorg. Chem., 2011, 50, 2133.
6 A. M. Kirillov, M. N. Kopylovich, M. V. Kirillova, M. Haukka,
M. F. C. Guedes da Silva and A. J. L. Pombeiro, Angew.
Chem., Int. Ed., 2005, 44, 4345.
The propensity, and precedent,22 for MeCN to act as a C1-
source prompted us to further investigate the reactivity of the
solvent under the reported reaction conditions. The decom-
position of MeCN to CO2 was investigated by a further con-
trol reaction conducted without MeH, although small
amounts of CO2 where observed (48 μmol) this experiment
does not account for the large amounts of CO2 produced
under catalytic conditions. Consistent with the more facile
oxidation of methanol than methane under the reaction con-
ditions, approximately 50 times more CO2 is produced than
MeOH regardless of the nature of the catalyst.
7 R. Elgammal and S. Foister, International Patent, WO 2011/
035064 A2, 2011.
8 (a) S. I. Chan, Y.-J. Lu, P. Nagababu, S. Maji, M.-C. Hung,
M. M. Lee, I.-J. Hsu, P. D. Minh, J. C.-H. Lai, K. Y. Ng, S.
Ramalingam, S. S.-F. Yu and M. K. Chan, Angew. Chem., Int.
Ed., 2013, 52, 3731; (b) P. Nagababu, S. S.-F. Yu, S. Maji, R.
Ramu and S. I. Chan, Catal. Sci. Technol., 2014, 4, 930.
9 (a) O. G. Shakirova, A. V. Virovets, D. Y. Naumov, Y. G.
Shvedenkov, V. N. Elokhina and L. G. Lavrenova, Inorg.
Chem. Commun., 2002, 5, 690; (b) J. Liu, Y. Song, Z. Yu, J.
Zhuang, X. Huang and X. You, Polyhedron, 1999, 18, 1491.
10 (a) A. D. Naik, J. Marchand-Brynaert and Y. Garcia, Synthesis,
2008, 149; (b) S. B. Muñoz III, W. K. Foster, H.-J. Lin, C. G.
Margarit, D. A. Dickie and J. M. Smith, Inorg. Chem.,
2012, 51, 12660.
11 In subsequent experiments a 1 : 1 ligand : metal ratio implied
by the CHN analysis is assumed. Possible structural motifs
include the coordination of nitrate to Cu. See for example,
(a) A. F. Stassen, W. L. Driessen, J. G. Haassnoot and J.
Reedijk, Inorg. Chim. Acta, 2003, 350, 57; (b) S. Amaral, W. E.
Jensen, C. P. Landee, M. M. Turnbull and F. M. Woodward,
Polyhedron, 2001, 20, 1317.
4. Conclusions
We have re-investigated
a
series of triazole- and
aminoethanol-based multimetallic copperIJII) catalysts for the
oxidation of cyclohexane and methane using H2O2. We con-
clude that, regardless of the minor differences in the TON
observed for methanol production, selectivity is an important
factor in these reactions. If useful homogeneous catalysts are
to be developed that reproduce the activity of enzymatic
(pMMO) or heterogeneous (M-ZSM-5) systems then selectivity
must be considered as
reactions.
a determining factor in these
12 J. A. Joule and K. Mills, Heterocyclic Chemistry, 2010, 5th
edn., Chichester, Blackwell Publishing.
13 DOSY data were processed within Topspin using the SimFit
Alogorithm.
Acknowledgements
We are grateful to the Royal Society for the provision of a Uni-
versity Research Fellowship (MRC). Royal Dutch Shell for pro-
ject funds (DP, CK).
14 B. Ding, L. Yi, P. Cheng, H.-B. Song and H.-G. Wang,
J. Coord. Chem., 2004, 57, 771.
15 P. Roy and M. Manassero, Dalton Trans., 2010, 39, 1539.
16 (a) P. Nagababu, S. Maji, M. P. Kumar, P. P.-Y. Chen, S. S.-F.
Yu and S. I. Chan, Adv. Synth. Catal., 2012, 354, 3275; (b)
S. I. Chan, C. Y.-C. Chien, C. S.-C. Yu, P. Nagababu, S. Maji
and P. P.-Y. Chen, J. Catal., 2012, 293, 186.
17 T. F. S. Silva, L. M. D. R. S. Martins, M. F. C. Guedes da
Silva, M. L. Kuznetsov, A. R. Fernandes, A. Silvam, C.-J. Pan,
J.-F. Lee, B.-J. Hwang and A. J. L. Pombeiro, Chem. – Asian J.,
2014, 9, 1132.
References
1 (a) J. M. Bollinger Jr., Nature, 2010, 465, 40; (b) R. A. Himes,
K. Barnese and K. D. Karlin, Angew. Chem., Int. Ed., 2010, 49,
6714; (c) R. A. Himes and K. D. Karlin, Proc. Natl. Acad. Sci.
U. S. A., 2009, 106, 18877.
2 (a) R. Balasubramanian, S. M. Smith, S. Rawat, L. A.
Yatsunyk, T. L. Stemmler and A. C. Rosenzweig, Nature,
2010, 465, 115; (b) R. Balasubramanian and A. C.
Rosenzweig, Acc. Chem. Res., 2007, 40, 573.
18 (a) A. M. Kirillov, M. N. Kopylovich, M. V. Kirillova, E. Y.
Karabach, M. Haukka, M. F. C. Guedes da Silva and A. J. L.
Pombeiro, Adv. Synth. Catal., 2006, 348, 159; (b) C. D. Nicola,
4114 | Catal. Sci. Technol., 2015, 5, 4108–4115
This journal is © The Royal Society of Chemistry 2015