Angewandte Chemie International Edition
10.1002/anie.201905416
COMMUNICATION
deuteration raises the lowest barrier in energy and leads to a
regioselectivity switch.
Valentine, E. I. Solomon, W. Nam, Nature 2011, 478, 502–505; f) D. F.
Leto, S. Chattopadhyaay, V. W. Day, T. A. Jackson, Dalton Trans. 2013,
42, 13014–13025; g) D. Brazzolotto, F. G. Cantú Reinhard, J. Smith-
As shown before, hydrogen atom abstraction reactions often
have barriers that correlate with the strength of the C–H bond
Jones, M. Retegan, L. Amidani, A. S. Faponle, K. Ray, C. Philouze, S.
P. de Visser, M. Gennari, C. Duboc, Angew. Chem. Int. Ed. 2017, 56,
[
17]
that is broken in the process. Therefore, we calculated the C–
8211–8215.
H bond dissociation energy (BDE) of the C –H and Caldehyde–H
[
6]
7]
a) M. K. Coggins, J. A. Kovacs, J. Am. Chem. Soc. 2011, 133, 12470–
12473; b) J. Cho, R. Sarangi, W. Nam, Acc. Chem. Res. 2012, 45,
1321–1330; c) M. K. Coggins, V. Martin-Diaconescu, S. DeBeer, J. A.
Kovacs, J. Am. Chem. Soc. 2013, 135, 4260–4272; d) H. E. Colmer, A.
W. Howcroft, T. A. Jackson, Inorg. Chem. 2016, 55, 2055–2069; e) Q.
Zhang, A. Bell-Taylor, F. M. Bronston, J. D. Gorden, C. R. Goldsmith,
Inorg. Chem. 2017, 56, 773–782.
bonds from the energy of the substrate with respect to an
isolated hydrogen atom and the substrate radical and find values
–
1
of DG = 72.1 and 79.5 kcal mol . Based on these values, the
reaction should give dominant hydrogen atom abstraction from
the C –H bond as seen for the natural substrate. The reason the
5
5
–1
TSHA, and TSHA,ald barriers are within 1 kcal mol probably is
[
a) R. B. VanAtta, C. E. Strouse, L. K. Hanson, J. S. Valentine, J. Am.
Chem. Soc.1987, 109, 1425–1434; b) N. Kitajima, H. Komatsuzaki, S.
Hikichi, M. Osawa, Y. Moro-Oka, J. Am. Chem. Soc.1994, 116, 11596–
11597; c) M. S. Seo, J. Y. Kim, J. Annaraj, Y. Kim, Y.–M. Lee, S.–J.
Kim, J. Kim, W. Nam, Angew. Chem. Int. Ed. 2007, 46, 377–380; d) R.
A. Geiger, S. Chattopadhyay, V. W. Day, T. A. Jackson, Dalton Trans.
1
due to electrostatic repulsions between the L ligand protons and
those from the approaching substrate that are stronger in TSHA,
than in TSHA,ald, where the cyclohexane ring is further away from
5
5
the ligand structure.
In summary, a Mn(III)–peroxo complex bearing a pentadentate
bispidine backbone was synthesized and characterized with
various spectroscopic techniques and studied with DFT. We
demonstrate here for the first time that the Mn(III)–peroxo
complex is capable of performing electrophilic oxidation of
substrates through the hydrogen atom abstraction from the C–H
bond of an aldehyde to gives the corresponding acid as a
product.
2011, 40, 1707–1715.
[
[
8]
9]
A. Shokri, L. Que, Jr., J. Am. Chem. Soc. 2015, 137, 7686–7691.
a) P. Barman, P. Upadhyay, A. S. Faponle, J. Kumar, S. S. Nag, D.
Kumar, C. V. Sastri, S. P. de Visser, Angew. Chem. Int. Ed. 2016, 55,
11091–11095; b) F. G. C. Reinhard, P. Barman, G. Mukherjee, J.
Kumar, D. Kumar, D. Kumar, C. V. Sastri, S. P. de Visser, J. Am. Chem.
Soc. 2017, 139, 18328–18338.
[10] P. Barman, A. K. Vardhaman, B. Martin, S. J. Wörner, C. V. Sastri, P.
Comba, Angew. Chem. Int. Ed. 2015, 54, 2095–2099.
1
[
11]
L
= dimethyl-2,4-di(2-pyridyl)3-(pyridin-2-ylmethyl)-7-benzyl-3,7-diaza-
2
bicyclo[3.3.1] nonan-9-one-1,5-dicarboxylate and L = dimethyl 2,4-di(2-
pyridyl)-3-benzyl-7-(pyridin-2-ylmethyl)-3,7-diazabicyclo[3.3.1] nonan-9-
one-1,5-dicarboxylate).
Experimental Section
Experimental Details see Supporting Information.
[
12] R. L. Shook, W. A. Gunderson, J. Greaves, J. W. Ziller, M. P. Hendrich,
A. S. Borovik, J. Am. Chem. Soc. 2008, 130, 8888–8889.
Keywords: Nonheme • Biomimetic models • Kinetic isotope
effects • Oxidation Reaction • Hydrogen atom abstraction •
Density functional theory
[13] a) W. J. Song, Y. O. Ryu, R. Song, W. Nam, J. Biol. Inorg. Chem. 2005,
0, 294–304; b) S. P. de Visser, Chem. Eur. J. 2006, 12, 8168–8177.
14] S. Shaik, D. Kumar, S. P. de Visser, J. Am. Chem. Soc. 2008, 130,
0128–10140.
1
[
[
1
15] S. P. de Visser, F. Ogliaro, P. K. Sharma, S. Shaik, Angew. Chem. Int.
Ed. 2002, 41, 1947–1951; Angew. Chem. 2002, 114, 2027–2031.
rd
[
1]
a) Cytochrome P450: Structure, Mechanism, and Biochemistry, 3 ed.
(
Ed.: P. R. Ortiz de Montellano), Kluwer Academic/Plenum Publishers,
[16] S. P. de Visser, Chem. Eur. J. 2006, 12, 8168–8177.
[17] F. G. Cantú Reinhard, A. S. Faponle, S. P. de Visser, J. Phys. Chem. A
2016, 120, 9805‒9814.
New York, 2005; b) Biomimetic Oxidations Catalyzed by Transition
Metal Complexes (Ed.: B. Meunier), Imperial College Press, London,
2
000.
a) M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Chem. Rev. 2004,
04, 939‒986; b) C. Krebs, D. G. Fujimori, C. T. Walsh, J. M. Bollinger
[
2]
1
Jr., Acc. Chem. Res. 2007, 40, 484‒492; c) E. I. Solomon, K. M. Light,
L. V. Liu, M. Srnec, S. D. Wong, Acc. Chem. Res. 2013, 46, 2725–2739.
a) A. F. Miller, Acc. Chem. Res. 2008, 41, 501–510; b) R. Eisenberg, H.
B. Gray, Inorg. Chem. 2008, 47, 1697–1699; c) A. J. Wu, J. E. Penner-
Hahn, V. L. Pecoraro, Chem. Rev. 2004, 104, 903–938.
[
3]
4]
[
a) S. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, Chem. Rev. 2005,
1
05, 2175–2226; b) M. M. Abu-Omar, A. Loaiza, N. Hontzeas, Chem.
Rev. 2005, 105, 2227‒2252; c) W. Nam, Acc. Chem. Res. 2007, 40,
22–531; d) P. C. A. Bruijnincx, G. van Koten, R. J. M. Klein Gebbink,
5
Chem. Soc. Rev. 2008, 37, 2716–2744; e) M. Atanasov, P. Comba, S.
Hausberg, B. Martin, Coord. Chem. Rev. 2009, 253, 2306–2314; f) M.
Costas, Coord. Chem. Rev. 2011, 255, 2912–2932; g) A. R. McDonald,
L. Que Jr., Coord. Chem. Rev. 2013, 257, 414–428; h) P. Saisaha, J.
W. de Boer, W. R. Browne, Chem. Soc. Rev. 2013, 42, 2059–2074.
a) G. Roelfes, V. Vrajmasu, K. Chen, R. Y. N. Ho, J.-U. Rohde, C.
Zondervan, R. M. la Crois, E. P. Schudde, M. Lutz, A. L. Spek, R. Hage,
B. L. Feringa, E. Münck, L. Que Jr., .Inorg. Chem 2003, 42, 2639–2653;
b) J. Annaraj, Y. Suh, M. S. Seo, S. O. Kim, W. Nam, Chem. Commun.
[
5]
2005, 4529–4531; c) A. Thibon, J.-F. Bartoli, S. Bourcier, F. Banse,
Dalton Trans. 2009, 9587–9584; d) A. Mukherjee, M. A. Cranswick, M.
Chakrabarti, T. K. Paine, K. Fujisawa, E. Münck, L. Que Jr., Inorg.
Chem. 2010, 49, 3618–3628; e) J. Cho, S. Jeon, S. A. Wilson, L. V. Liu,
E. A. Kang, J. J. Braymer, M. H. Lim, B. Hedman, K. O. Hodgson, J. S.
4
This article is protected by copyright. All rights reserved.