Communications
thane sulfonate to 1 gave no rearrangement product 2 at
room temperature. Only formation of the corresponding
[4] a) V.K. Yadav, Synth. Commun. 1990, 20, 239 – 246; b) H.
Brunner, W. Zettlmeier, Bull. Soc. Chim. Belg. 1991, 100, 247 –
2
57.
5] a) V. P. Kukhar', E. I. Sagina, Zh. Obshch. Khim. 1976, 46, 2686 –
689; b) U. Rose, J. Heterocycl. Chem. 1991, 28, 2005 – 2012; c) K.
amounts
of
the
quasi-phosphonium
salt
[
+
ꢀ
31
[
MeO(Ph) PMe] [OTf] was detected ( P NMR: d =
2
2
7
7.8 ppm in CDCl ). Only heating the reaction mixture
3
Toshima, H. Yamagushi, T. Jyojima, Y. Nogushi, M. Nakata, S.
to 1008C, without solvent, gave the formation of 2, about
5%, together with a mixture of starting phosphinite, and
the oxidation product O-methyl diphenylphosphinate.
Matsumura, Tetrahedron Lett. 1996, 37, 1073 – 1076.
[6] W. Flisch, P. Rußkamp, W. Langer, Liebigs Ann. Chem. 1985,
1
1413 – 1421.
[
7] a) T. Janecki, R. Bodalski, Synthesis 1990, 799 – 801; b) R. S.
Macomber, D. E. Rardon, D. M. Ho, J. Org. Chem. 1992, 57,
*
*
Equimolar mixtures of phosphane oxide diastereoisomers
(
(
Table 1, entries 13 and 18) and racemic mixtures
Table 1, entry 8) were obtained, even when enantiomeri-
3874 – 3881; c) S. Demay, K. Harms, P. Knochel, Tetrahedron Lett.
1999, 40, 4981– 4984; d) W. G. Bentrude, S. G. Lee, K. Akuta-
cally pure sec-phenethyl alcohols were used.
gawa, W. Ye, Y. Charbonnel, J. Am. Chem. Soc. 1987, 109, 1577;
e) D. Shukla, C. Lu, N. P. Schepp, W. G. Bentrude, L.J. Johnston,
J. Org. Chem. 2000, 65, 6167 – 6172; f) T. Wada, Y. Sato, F. Honda,
S.-I. Kawahara, M. Sekine, J. Am. Chem. Soc. 1997 119, 1 271 0 –
12721; g) M. R. Banks, R. F. Hudson, J. Chem. Soc. Perkin Trans.
For the Arbuzov rearrangement, a bimolecular process
involving nucleophilic addition of phosphite to phospho-
[
8]
nium has already been described, and confirmed by
kinetic experiments.[
3b]
This is actually the only possible
2
1989, 463 – 467; h) A. E. Arbuzov, K.V. Nikonorov, Zh. Obshch.
Khim. 1948, 18, 2008; h) V. Mark, Mech. Mol. Migr. 1969, 2, 31 9 –
37. Noteworthy is the spontaneous rearrangement of particularly
mechanism when methyl triflate is used as a halide
equivalent, since the nucleophilicity of the corresponding
4
ꢀ
trifluoromethane sulfonate anion TfO is particularly
activated triarylmethyl phosphorus-3-esters, for instance D. V. D.
Hardy, H. H. Hatt, J. Chem. Soc. 1952, 3778 – 3783, and references
therein.
[
9]
low.
In conclusion, we have demonstrated that use of an oxophilic
Lewis acid, such as BF .OEt or TMSOTf, could induce an
[
8] a) P. Rumpf, Bull. Soc. Chim. Fr. 1951, 18, 128; b) T. B. Brill, S. J.
Landon, Chem. Rev. 1984, 84, 577 – 585.
9] a) K. S. Colle, E. S. Lewis, J. Org. Chem. 1978, 43, 571– 574;
b) E. S. Lewis, K. S. Colle, J. Org. Chem. 1981, 46, 4369 – 4372.
3
2
Arbuzov-like rearrangement. The reaction conditions are
particularly mild, since in most cases, room temperature or
moderate heating are sufficient, which has not been described
before for Arbuzov rearrangements. The scope of the reaction
has been extended to phosphites, phosphinites, and phos-
phonites. As in the corresponding Arbuzov rearrangement
using alkyl halides, the migrating groups are limited to both
primary and activated secondary alkyl groups. The reaction
mechanism has also been clarified, and a bimolecular process
is proposed.
[
This room-temperature, catalyzed Arbuzov rearrange-
ment, offers new reaction pathways for the synthesis of
compounds containing carbon–phosphorus bonds, for exam-
ple, key intermediates for the synthesis of both physiologi-
cally active drugs and basic chemical building blocks (via
further Wittig or Horner–Wadsworth–Emmons reactions, for
instance).
Received: October 1, 2002
Revised: December 18, 2002 [Z50270]
Keywords: Lewis acids · michaelis–arbuzov rearrangement ·
.
phosphorus · rearrangement
[
1] a) A. Michaelis, R. Kaehne, Ber. Dtsch. Chem. Ges. 1898, 31,
408; b) A. E. Arbuzov, J. Russ. Phys. Chem. Soc. 1906, 38, 687; c)
1
The Chemistry of Organophosphorus Compounds (Ed.: F. H.
Hartley), Wiley, New York, 1996; d) A. K. Bhattacharya, G.
Thyagarajan, Chem. Rev. 1981, 81, 415 – 430.
[
2] M. Saady, L. Lebeau, C. Mioskowski, Tetrahedron Lett. 1995, 36,
5183 – 5186; M. Saady, L. Lebeau, C. Mioskowski, Helv. Chim.
Acta 1995, 78, 670 – 678.
[
3] a) J. E. Griffiths, A. B. Burg, J. Am. Chem. Soc. 1962, 84, 3442 –
3450; b) E. S. Lewis, D. Hamp, J. Org. Chem. 1983, 48, 2025 –
2029; c) H. J. Woerz, E. Quien, H. P. Latscha, Z. Naturforsch. B
1984, 39, 1706 – 1710.
2
392
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 2389 – 2392