398
S.L. Yu et al. / Chinese Chemical Letters 23 (2012) 395–398
Acknowledgments
We are grateful to the National Natural Science Foundation of China (Nos. 20423002, 20923004, and 21173176),
Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1036) and State Key
Laboratory of Physical Chemistry of Solid Surfaces for financial support.
References
[1] R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
[2] I. Ojima, Catalytic Asymmetric Synthesis, Wiley, New York, 2000.
[3] P.W.N.M. van Leeuwen, Homogeneous Catalysis: Understanding the Art, Springer-Verlag, Berlin, 2005.
[4] Y.X. Li, Y.L. Zheng, F.T. Tian, et al. Chin. J. Org. Chem. 29 (2009) 1487 (in Chinese).
[5] S.L. Yu, Y.Y. Li, Z.R. Dong, et al. Chin. Chem. Lett. 22 (2011) 1269.
[6] R.E. Douthwaite, Coord. Chem. Rev. 251 (2007) 702.
[7] J.C. Kizirian, Chem. Rev. 108 (2008) 140.
[8] H. Liu, D.M. Du, Adv. Synth. Catal. 352 (2010) 1113.
[9] D. Rechavi, M. Lemaire, Chem. Rev. 102 (2002) 3467.
[10] G. Desimoni, G. Faita, K.A. Jørgensen, Chem. Rev. 106 (2006) 3561.
[11] R. Rasappan, D. Laventine, O. Reiser, Coord. Chem. Rev. 250 (2008) 702.
[12] J.M. Fraile, J.I. Garcia, C.I. Herrerias, et al. Catal. Today 140 (2009) 44.
[13] G.C. Hargaden, P.J. Guiry, Chem. Rev. 109 (2009) 2505.
[14] S. Hashiguchi, A. Fujii, J. Takehara, et al. J. Am. Chem. Soc. 117 (1995) 7562.
[15] A. Fujii, S. Hashiguchi, N. Uematsu, et al. J. Am. Chem. Soc. 118 (1996) 2521.
[16] A. Ros, A. Magriz, H. Dietrich, et al. Tetrahedron 63 (2007) 7532.
[17] X.F. Wu, X.H. Li, A. Zanotti-Gerosa, et al. Chem. Eur. J. 14 (2008) 2209.
[18] L. Peng, X.Y. Xu, L.L. Wang, et al. Eur. J. Org. Chem. 10 (2010) 1849.
[19] B.M. Trost, I. Hachiya, J. Am. Chem. Soc. 120 (1998) 1104.
[20] B.M. Trost, K. Dogra, I. Hachiya, et al. Angew. Chem. Int. Ed. 41 (2002) 1929.
[21] M.I. Burguete, J. Escorihuela, S.V. Luis, et al. Tetrahedron 64 (2008) 9717.
[22] Y. Xiong, X. Huang, S.H. Gou, et al. Adv. Synth. Catal. 348 (2006) 538.
[23] W.Y. Shen, H. Zhang, H.L. Zhang, et al. Tetrahedron: Asymmetry 18 (2007) 729.
[24] K.B. Niewiadomski, H. Suschitzky, J. Chem. Soc. Perkin Trans. 1 (1975) 1679.
20
[25] Compound 6: mp 104–105 8C; ½aꢁD ꢀ56.5 (c 1.0, CH2Cl2); 1H NMR (400 MHz, CDCl3): d 1.36 (d, 3H, J = 6.4 Hz), 1.46–1.58 (m, 4 H), 1.58–
1.74 (m, 8 H), 2.75–2.90 (m, 8 H), 3.75–3.95 (m, 3 H), 6.92–7.02 (m, 4 H), 7.26–7.34 (m, 2 H), 7.81–7.88 (m, 2 H), 8.56 (s, 1 H), 8.60 (s, 1 H);
13C NMR (100 MHz, CDCl3): d 20.63, 24.19, 26.29, 54.53, 54.63, 66.91, 68.80, 118.46, 118.63, 122.32, 122.36, 127.71, 127.91, 129.48,
129.58, 130.82, 130.93, 154.05, 154.20, 159.16, 161.03; IR (KBr) n: 3451, 2969, 2948, 2926, 2853, 2832, 2802, 2735, 1634, 1597, 1481, 1448,
1378, 1363, 1326, 1280, 1231, 1158, 1140, 1100, 1024, 927, 777, 762, 750, 652 cmꢀ1; EIMS (m/z): 417.3 (M+1). Compound 7: mp 216 8C
20
(dec.); ½aꢁD þ 9:5 (c 1.0, MeOH); 1H NMR (400 MHz, CD3OD): d 1.46–1.70 (m, 12 H), 2.65–2.81 (m, 8 H), 3.93 (t, 1H, J = 10.8 Hz,), 4.25
(dd, 1H, J = 10.8 Hz and 3.2 Hz), 4.38–4.47 (m, 1 H), 6.91–7.04 (m, 4 H), 7.26–7.34 (m, 2 H), 7.72 (dd, 1H, J = 7.6 Hz and 1.6 Hz), 7.91 (dd,
1H, J = 7.6 Hz and 1.6 Hz), 8.51 (s, 1 H), 8.54 (s, 1 H); 13C NMR (100 MHz, CD3OD): d 25.19, 25.20, 27.33, 27.38, 55.79, 55.83, 65.69, 78.68,
119.74, 120.02, 123.34, 123.43, 128.66, 129.19, 130.14, 130.42, 132.36, 132.63, 155.86, 155.91, 163.27, 164.11, 178.14; IR (KBr) n: 3424,
2936, 2847, 2786, 2738, 1628, 1591, 1481, 1448, 1372, 1286, 1222, 1158, 1024, 927, 756, 747 cmꢀ1; MS (ESI) m/z: [M+Na]+ 468.9.