Organic Letters
Letter
Notes
preferentially from a less-hindered side, anti to large
benzothiazole moiety and syn to sulfone oxygen atoms.18
This would explain the highly diastereoselective fluorination.
Isomerization of the newly formed fluorinated stereogenic
center in (R,R)-3a could plausibly be rationalized in a similar
manner. Capture of a proton by carbanion III generated from
(R,R)-3a (showing Li chelation to the benzothiazole nitrogen
and Boc oxygen atoms, Figure 2), from a less-hindered side,
would result in inversion at the fluorine-bearing stereogenic
center, to give (R,S)-3a.19
In summary, metalation−electrophilic fluorination α to a
sulfone moiety in chiral N-Boc-protected (R)- and (S)-2,2-
dimethyl-4-((arylsulfonyl)methyl)oxazolidines proceeded with
good to excellent diastereoselectivity. Diastereoselectivities
depend on the base used and on the aryl/heteroaryl moiety
and were best with LDA and benzothiazolyl-derived sulfones.
Previously unknown base-induced epimerization at the fluorine-
bearing stereogenic center α to a sulfone proceeded with good
to excellent diastereoselectivity and was the highest for
benzothiazolyl sulfones. This chemistry allows for stereo-
diversity in that from a single chiral precursor either of the two
fluorinated, enantiomerically pure diastereomers can be
synthesized. No chirality scrambling occurs at the original
stereocenter in the fluorination or epimerization steps. Utility
of these chiral, benzothiazole sulfone building blocks was
shown by their conversion to benzyl sulfones, via intermediate
sulfinate salts, without erosion of chirality at the fluorine-
bearing carbon atom. Diastereomeric benzyl sulfones were
further converted to N-Boc-protected amino acids. On the basis
of computational models of the carbanions derived from
benzothiazolyl sulfones, chelation of Li by benzothiazole N and
the Boc O atoms could plausibly account for the
diastereoselectivities observed in metalation−fluorination and
in the base-induced epimerization by approach of the
electrophile from a less-hindered side.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support of this work by NSF Grant No. CHE-1565754 and
PSC CUNY awards to B.Z. is gratefully acknowledged.
Infrastructural support at CCNY was provided by NIH Grant
No. G12MD007603 from the NIMHD. We thank Dr. Andrew
Poss (Honeywell) for a sample of NFSI and Dr. Michelle Neary
(The CUNY X-ray Facility, Hunter College) for X-ray analysis
of (S,S)-3a. We are grateful to the CUNY HPCC at the CSI
funded by NSF Grant Nos. CNS-0958379, CNS-0855217, and
ACI 1126113.
REFERENCES
■
(1) (a) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH
Verlag: Weinheim, 2004. (b) Laali, K. K., Ed. Modern Organofluorine
Chemistry−Synthetic Aspects; Bentham Science Publishers: San
́ ́
Francisco, 2006; Vol. 2. (c) Begue, J.-P.; Bonnet-Delpon, D. Bioorganic
and Medicinal Chemistry of Fluorine; John Wiley & Sons, Inc.:
Hoboken, NJ, 2008. (d) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308−
319. (e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed.
2013, 52, 8214−8264. (f) Gillis, E. P.; Eastman, K. J.; Hill, M. D.;
Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315−8359.
(g) Thematic issue on organofluorine chemistry: Chem. Rev. 2015,
115, 563−1306.
(2) (a) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1−PR43.
(b) Iwasaki, Y.; Shimizu, M.; Hirosawa, T.; Yamada, S. Tetrahedron
Lett. 1996, 37, 6753−6754.
(3) Zajc, B.; Kumar, R. Synthesis 2010, 2010, 1822−1836.
(4) Recent examples: (a) Kumar, R.; Pradhan, P.; Zajc, B. Chem.
Commun. 2011, 47, 3891−3893. (b) Mandal, S. K.; Ghosh, A. K.;
Kumar, R.; Zajc, B. Org. Biomol. Chem. 2012, 10, 3164−3167.
(c) Kumar, R.; Zajc, B. J. Org. Chem. 2012, 77, 8417−8427.
(d) Kumar, R.; Singh, G.; Todaro, L. J.; Yang, L.; Zajc, B. Org.
Biomol. Chem. 2015, 13, 1536−1549. (e) Banerjee, S.; Sinha, S.;
Pradhan, P.; Caruso, A.; Liebowitz, D.; Parrish, D.; Rossi, M.; Zajc, B.
J. Org. Chem. 2016, 81, 3983−3993.
ASSOCIATED CONTENT
■
(5) (a) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahedron 2004, 60,
6711−6745. (b) Qiu, X.-L.; Qing, F.-L. Eur. J. Org. Chem. 2011, 2011,
3261−3278.
S
* Supporting Information
The Supporting Information is available free of charge on the
(6) (a) Dua, R. K.; Taylor, E. W.; Phillips, R. S. J. Am. Chem. Soc.
1993, 115, 1264−1270. (b) Drysdale, M. J.; Reinhard, J. F. Bioorg.
Med. Chem. Lett. 1998, 8, 133−138. (c) Becker, D. P.; DeCrescenzo,
G.; Freskos, J.; Getman, D. P.; Hockerman, S. L.; Li, M.; Mehta, P.;
Munie, G. E.; Swearingen, C. Bioorg. Med. Chem. Lett. 2001, 11, 2723−
2725. (d) Becker, D. P.; Barta, T. E.; Bedell, L.; DeCrescenzo, G.;
Freskos, J.; Getman, D. P.; Hockerman, S. L.; Li, M.; Mehta, P.;
Mischke, B.; Munie, G. E.; Swearingen, C.; Villamil, C. I. Bioorg. Med.
Chem. Lett. 2001, 11, 2719−2722.
1
Experimental details, compound data, and H and 13C
Accession Codes
lographic data for this paper. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(7) (a) Liang, X.; Andersch, J.; Bols, M. J. Chem. Soc., Perkin Trans. I
2001, 2136−2157. (b) Passiniemi, M.; Koskinen, A. M. P. Beilstein J.
Org. Chem. 2013, 9, 2641−2659.
(8) De Jonghe, S.; Van Overmeire, I.; Van Calenbergh, S.; Hendrix,
C.; Busson, R.; De Keukeleire, D.; Herdewijn, P. Eur. J. Org. Chem.
2000, 2000, 3177−3183.
(9) Teare, H.; Huguet, F.; Tredwell, M.; Thibaudeau, S.; Luthra, S.;
Gouverneur, V. ARKIVOC 2007, No. x, 232−244.
(10) Soloshonok, V. A. Angew. Chem., Int. Ed. 2006, 45, 766−769.
(11) Ueno, Y.; Kojima, A.; Okawara, M. Chem. Lett. 1984, 13, 2125−
2128.
(12) Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem.
2014, 12, 9743−9759.
(13) (a) Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A.
Angew. Chem., Int. Ed. 2011, 50, 2559−2563. (b) Zhou, Q.; Ruffoni,
A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S.
Angew. Chem., Int. Ed. 2013, 52, 3949−3952. (c) He, Z.; Tan, P.; Ni,
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
¶W.W. and R.K.K. contributed equally to this work.
D
Org. Lett. XXXX, XXX, XXX−XXX