FULL PAPER
[4]
H. A. Höppe, Angew. Chem. 2009, 121, 3626; Angew. Chem.
Int. Ed. 2009, 48, 3572–3582.
C. C. Lin, R.-S. Liu, J. Phys. Chem. Lett. 2011, 2, 1268–1277.
G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer
Verlag, Berlin, 1994.
a) T. Saito, H. Sato, T. Motegi, J. Alloys Compd. 2006, 425,
145–147; b) M. A. Rabah, Waste Management 2008, 28, 318–
325.
a) P. A. Tanner, C.-K. Duan, Coord. Chem. Rev. 2010, 254,
3026–3029; b) J.-C. G. Bünzli, S. Comby, A.-S. Chauvin,
C. D. B. Vandevyver, J. Rare Earth. 2007, 25, 257–274.
a) C. Feldmann, T. Jüstel, C. R. Ronda, P. J. Schmidt, Adv.
Funct. Mater. 2003, 13, 511–516; b) G. Blasse, Mater. Chem.
Phys. 1987, 16, 201–236.
[Eu(EtOphen)2(NO3)3]: C 42.76, H 3.08, N 12.47; found C 42.51,
H 2.95, N 12.49.
[5]
[6]
Crystals were obtained as for Eu6, except that 25 mg (0.11 mmol)
of 7 and 16 mg (0.04 mmol) of Eu(NO3)3·5H2O were used. After
three weeks at room temperature, yellow platelike crystals had
formed in the tube.
[7]
[8]
[9]
[Eu(NH2phen)2(NO3)3] (Eu8): A solution of 8 (0.32 g, 1.6 mmol) in
ethanol (20 mL) and
a solution of Eu(NO3)3·5H2O (0.23 g,
0.54 mmol) in ethanol (10 mL) were heated and stirred at 60 °C for
10 min. The salt solution was added dropwise to the ligand solu-
tion. A yellow precipitate formed immediately. After cooling to
room temperature, the precipitate was collected on a sintered fun-
nel and washed with three portions of ethanol (20 mL). The pre-
cipitate was allowed to dry in air to yield 0.33 g (84% based on
[10]
[11]
S. I. Weissman, J. Chem. Phys. 1942, 10, 214–217.
a) L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro,
M. Cavazzini, E. Tondello, Coord. Chem. Rev. 2010, 254, 487–
505; b) G. F. de Sa, O. L. Malta, C. D. Donega, A. M. Simas,
R. L. Longo, P. A. Santa-Cruz, E. F. da Silva, Coord. Chem.
Rev. 2000, 196, 165–195; c) K. Binnemans, Chem. Rev. 2009,
109, 4283–4374.
a) H. Yan, H. Wang, P. He, J. Shi, M. Gong, Inorg. Chem.
Commun. 2011, 14, 1065–1068; b) K. Binnemans, in: Handbook
on the Physics and Chemistry of Rare Earths, vol. 35, Elsevier,
2005, p. 107–272.
G. Bourhill, L. O. Pålsson, I. D. W. Samuel, I. C. Sage, I. D. H.
Oswald, J. P. Duignan, Chem. Phys. Lett. 2001, 336, 234–241.
a) H. Wang, P. He, S. Liu, J. Shi, M. Gong, Appl. Phys. B 2009,
97, 481–487; b) P. He, H. Wang, S. Liu, J. Shi, M. Gong, Appl.
Phys. B 2010, 99, 757–762.
a) M. L. P. Reddy, V. Divya, R. O. Freire, Dalton Trans. 2011,
40, 3257–3268; b) T. J. Mooibroek, P. Gamez, A. Pevec, M.
Kasunicˇ, B. Kozlevcˇar, W. T. Fu, J. Reedijk, Dalton Trans.
2010, 39, 6483–6487; c) N. M. Shavaleev, R. Scopelliti, F.
Gumy, J.-C. G. Bünzli, Inorg. Chem. 2009, 48, 6178–6191; d)
K. P. Zhuravlev, V. I. Tsaryuk, I. S. Pekareva, J. Sokolnicki,
Z. S. Klemenkova, J. Photochem. Photobiol. A: Chem. 2011,
219, 139–147; e) K. Zhuravlev, V. Tsaryuk, J. Legendziewicz, V.
Kudryashova, P. Gawryszewska, V. Zolin, Opt. Mater. 2009,
31, 1822–1824; f) K. Manseki, S. Yanagida, Chem. Commun.
2007, 1242–1244.
Eu). IR: ν = 3484 (m), 3440 (m), 3379 (m), 3252 (m), 1657 (m),
˜
1646 (s), 1616 (m), 1594 (m), 1564 (m), 1540 (w), 1520 (m), 1496
(vs), 1472 (vs), 1456 (vs), 1436 (s), 1423 (s), 1385 (vs), 1318 (br. s),
1275 (s), 1216 (m), 1156 (m), 1093 (m), 1031 (s), 841 (vs), 811 (s),
778 (m), 732 (s), 721 (s), 702 (s), 659 (s), 643 (s), 583 (m), 518 (m),
448 (s), 433 (s), 413 (vs), 398 (vs), 374 (s), 349 (m), 342 (m), 328
(s) cm–1. C24H18EuN9O9 (728.4) [Eu(NH2phen)2(NO3)3]: C 39.57,
H 2.49, N 17.31; found C 39.45, H 2.80, N 16.72. Single crystals
of Eu8 were obtained using the procedure described for Eu6, but
with 0.15 g (0.75 mmol) of 8 and 0.11 g (0.38 mmol) of Eu(NO3)3·
5H2O and slow cooling of the reaction mixture to room tempera-
ture.
[12]
[13]
[14]
[La(NH2phen)2(NO3)3] (La8): The procedure for the synthesis of
Eu8 was followed, except that 0.21 g (0.5 mmol) La(NO3)3·5H2O
was used instead of Eu(NO3)3·5H2O and 0.29 g (1.5 mmol) of 8,
[15]
yield 0.23 g (65% based on La). IR: ν = 3482 (m), 3431 (m), 3379
˜
(m), 3246 (m), 1645 (s), 1588 (m), 1562 (m), 1465 (vs), 1438 (vs),
1423 (s), 1385 (vs), 1317 (br. s), 1269 (s), 1215 (m), 1031 (s), 842
(vs), 812 (s), 775 (m), 731 (s), 719 (s), 701 (s), 659 (m), 642 (s), 582
(w), 537 (w), 514 (w) cm–1. C24H18LaN9O9 (715.4) + 0.1La(NO3)3
(32.5) [La(NH2phen)2(NO3)3 + 0.1La(NO3)3]: C 38.55, H 2.43, N
17.42; found C 38.03, H 2.32, N 17.41. Single crystals were ob-
tained as for Eu8.
[16]
a) Z. Pan, G. Jia, C.-K. Duan, W.-Y. Wong, W.-T. Wong, P. A.
Tanner, Eur. J. Inorg. Chem. 2011, 637–646; b) M. F. Belian,
H. J. Batista, A. G. S. Bezerra, W. E. Silva, G. F. de Sá, S.
Alves Jr., Chem. Phys. 2011, 381, 29–34; c) M. O. Ahmed, J.-
L. Liao, X. Chen, S.-A. Chen, J. H. Kaldis, Acta Crystallogr.,
Sect. E. Struct. Rep. Online 2003, 59, m29–m32; d) C. Xu, J.
Rare Earth. 2010, 28, 854–857; e) B. Yan, H.-j. Zhang, S.-b.
Wang, J.-z. Ni, Mater. Chem. Phys. 1997, 51, 92–96.
A. G. Mirochnik, B. V. Bukvetskii, P. A. Zhikhareva, V. E. Kar-
asev, Russ. J. Coord. Chem. 2001, 27, 443–448.
CCDC-944774 (for Eu6), -944775 (for Eu7), -944776 (for Eu8), and
-944777 (for La8) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): It contains synthesis details, thermogravimetric analysis, single
crystal structure determination, luminescence lifetime measure-
ments, absorption spectra, emission spectra, and matrix elements
used for JO theory.
[17]
[18]
V. Tsaryuk, V. Zolin, L. Puntus, V. Savchenko, J. Legendziew-
icz, J. Sokolnicki, R. Szostak, J. Alloys Compd. 2000, 300–301,
184–192.
[19]
[20]
[21]
A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Wat-
son, R. Taylor, J. Chem. Soc., Dalton Trans. 1989, S1–S83.
D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K.
Howard, Chem. Rev. 2002, 102, 1977–2010.
a) R. Reisfeld, E. Zigansky, M. Gaft, Mol. Phys. 2004, 102,
1319–1330; b) B. Francis, D. B. A. Raj, M. L. P. Reddy, Dalton
Trans. 2010, 39, 8084–8092.
Acknowledgments
The authors are grateful to Prof. Dr. A. Meijerink (Utrecht Univer-
sity) for his help with the determination of the luminescence life-
times and quantum yields of the complexes.
[22]
[23]
a) M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C.
Rodriguez-Ubis, J. Kankare, J. Lumin. 1997, 75, 149–169; b) S.
Petoud, J.-C. G. Bünzli, T. Glanzman, C. Piguet, Q. Xiang,
R. P. Thummel, J. Lumin. 1999, 82, 69–79; c) W. M. Faustino,
O. L. Malta, G. F. de Sa, J. Chem. Phys. 2005, 122, 054109.
a) L. Prodi, M. Maestri, R. Ziessel, V. Balzani, Inorg. Chem.
1991, 30, 3798–3802; b) N. M. Shavaleev, S. V. Eliseeva, R. Sco-
pelliti, J.-C. G. Bünzli, Chem. Eur. J. 2009, 15, 10790–10802.
[1] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 1994, 64,
1687–1689.
[2] a) R.-J. Xie, N. Hirosaki, Sci. Technol. Adv. Mater. 2007, 8,
588–600; b) Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano,
T. Mukai, J. Phys. D 2010, 43, 354002; c) E. F. Schubert, J. K.
Kim, H. Luo, J. Q. Xi, Rep. Prog. Phys. 2006, 69, 3069–3099.
[3] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, Mater. Sci.
Eng. R 2010, 71, 1–34.
Eur. J. Inorg. Chem. 2013, 6137–6146
6145
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim