Angewandte
Communications
Chemie
[9] a) J. J. Devery III, J. D. Nguyen, C. Dai, C. R. J. Stephenson,
[11] G. Povie, L. Ford. D. Pozzi, V. Soulard, G. Villa, P. Renaud,
[12] a) P. C. Too, G. H. Chan, Y. L. Tnay, H. Hirao, S. Chiba, Angew.
b) Z. Hong, D. Y. Ong, S. K. Muduli, P. C. Too, G. H. Chan, Y. L.
not be obtained. When calculations were performed without
adding two explicit THF molecules, the transition state for the
SNVs pathway could be located; however the barrier for this
process was higher than that for the SNVp pathway by about
8 kcalmolÀ1 (see the SI). These results suggest that the SNVp
pathway should be the dominant one for this process and are
well consistent with the stereochemical outcomes in the
hydrodebromination of syn- and anti-4r (Scheme 5).
This work demonstrated a new reactivity of sodium
hydride in hydrodehalogenation of haloarenes that proceeds
via a concerted nucleophilic aromatic substitution pathway.
We are currently working to explore other types of reductive
molecular transformations with the NaH–iodide composite.
[13] It should be noted that solvothermal treatment of NaH and LiI
induces counter-ion metathesis to form the NaH–NaI composite,
which is responsible for the present hydride transfer reactions.
See Ref. [12b].
Acknowledgements
[14] For reports on intermolecular concerted nucleophilic aromatic
substitution, see: a) L. I. Goryunov, J. Grobe, D. L. Van, V. D.
Shteingarts, R. Mews, E. Lork, E.-U. Wꢁrthwein, Eur. J. Org.
117, 5484; c) A. H. M. Renfrew, J. A. Taylor, J. M. J. Whitmore,
This work was financially supported by Nanyang Technolog-
ical University (NTU). H.H. gratefully acknowledges
a Nanyang Assistant Professorship and the computer resour-
ces at the High-Performance Computing Centre of NTU. We
thank Prof. Han Sen Soo and Zhonghan Hong (Division of
Chemistry and Biological Chemistry, NTU) for the assistance
in powder XRD experiments.
[15] For reports on intramolecular concerted nucleophilic aromatic
substitution, see: a) C. N. Neumann, J. M. Hooker, T. Ritter,
Rajzmann, D. Bonne, O. Chuzel, J. Rodriguez, Y. Coquerel,
Moseley, J. S. Renny, Synthesis 2008, 661.
Conflict of interest
The authors declare no conflict of interest.
[16] There are reports on hydrodehalogenation of haloarenes solely
by NaH, while only very simple substrates were examined under
harsh reaction conditions and no discussion of the reaction
mechanism was given, see: a) W. Zhang, S. Liao, Y. Xu, Y.
Zhang, Synth. Commun. 1997, 27, 3977; b) R. B. Nelson, G. W.
Keywords: DFT calculations · haloarenes ·
hydrodehalogenation · reduction · sodium hydride
[17] a) J. Garnier, D. W. Thomson, S. Zhou, P. I. Jolly, L. E. A.
b) L. J. Johnston, J. Lusztyk, D. D. M. Wayner, A. N. Abeywick-
reyma, A. L. J. Beckwith, J. C. Scaiano, K. U. Ingold, J. Am.
Chem. 1983, 95, 597.
[19] H. Jenkner, US Patent US3116112A, 1953.
[20] Another 50% of H-incorporation was due to single-electron
reduction by metallic sodium contaminant. See the SI for details.
[21] NaH has ionic character with the cubic halite crystal structure
composed of sodium cations and hydride anions: a) “Sodium
Hydride”: R. E. Gawley, D. D. Hennings in The Electronic
Encyclopedia of Reagents for Organic Synthesis (e-EROS) (Ed.:
D. Crich), Wiley, Chichester, 2006; b) P. Rittmeyer, U. Wietel-
mann, Hydrides in Ullmannꢀs Encyclopedia of Industrial
Chemistry, Wiley-VCH, Weinheim, 2012; c) S. Aldridge, A. J.
[1] Modern Reduction Methods (Eds.: P. G. Andersson, I. J. Mun-
slow), Wiley-VCH, Weinheim, 2008.
[2] For synthesis of functionalized aromatic molecules, see: A.
Ramanathan, L. S. Jimenez, Synthesis 2010, 217.
[3] G. Cagnetta, J. Robertson, J. Huang, K. Zhang, G. Yu, J. Hazard.
[5] a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F.
[6] a) J. Chen, Y. Zhang, L. Yang, X. Zhang, J. Liu, L. Li, H. Zhang,
e) N. M. Yoon, Pure Appl. Chem. 1996, 68, 843.
[7] a) Encyclopedia of Radicals in Chemistry Biology and Materials,
Vol. 1 – 4 (Eds.: C. Chatgilialoglu, A. Studer), Wiley, New York,
2012; b) Radicals in Organic Synthesis, Vol. 1 & 2 (Eds.: P.
Renaud, M. P. Sibi), Wiley-VCH, Weinheim, 2001.
[8] S. S. Hanson, E. Doni, K. T. Traboulsee, G. Coulthard, J. A.
[22] Gaussian09 (RevisionB.01), M. J. Frisch, et al., Gaussian Inc.,
Wallingford CT, 2010.
[23] Nucleophilic aromatic substitution reactions via addition–elim-
ination mechanism normally show larger 1 values between 3 and
2962; b) R. Y. Sung, H. Choi, J. P. Lee, J. K. Park, K. Yang, I. S.
Koo, Bull. Korean Chem. Soc. 2009, 30, 1579; c) W. Greizerstein,
[24] For reviews on SNV reactions, see: a) S. Chiba, K. Ando, K.
Narasaka, Synlett 2009, 2549; b) T. Okuyama, G. Lodder in
4
ꢀ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2017, 56, 1 – 6
These are not the final page numbers!