4
Tetrahedron
the Centre for Magnetic Resonance of Saint Petersburg State
University for recording of 1H and 13C NMR spectra. High-
resolution mass spectra were recorded in the Department of
Structural Studies of Zelinsky Institute of Organic Chemistry,
Moscow. This work is supported by a grant of the Russian
Science Foundation (RSF grant 14-50-00126).
O
FeCl3
R1
R2
[O]
1
FeCl3
A
[O] = (NH4)2S2O8, O2
O
FeCl2
References and notes
R1
R2
O
1.
2.
A. Bandyopadhyay, G. C. Basak. Mater. Sci. Technol. 2007, 23, 307.
−8661; b) I.
a) F. Chen, T. Wang, N. Jiao. Chem. Rev. 2014, 114, 8613
R1
O R
Marek, A. Masarwa, P.-O. Delaye, M. Leibeling. Angew. Chem. Int. Ed.
2015, 54, 414–429.
FeCl2
O
3
R
O
2
H
3.
a) A. Baeyer, V. Villiger. Ber. Dtsch. Chem. Ges. 1899, 32 (3), 3625–
3633; b) G.-J. Brink, I. W. C. E. Arends, R. A. Sheldon. Chem. Rev. 2004,
104, 4105–4123; c) K. P. Bryliakov. Chem. Rev. 2017,
DOI: 10.1021/acs.chemrev.7b00167.
R1
R2
oxidation products
of the R2-groups
[O]
R
O
HCl
B
4.
5.
a) P. A. S. Smith. J. Am. Chem. Soc. 1948, 70, 320–323; b) S. Braese, C.
Gil, K. Knepper, V. Zimmermann. Angew. Chem., Int. Ed. 2005, 44, 5188.
a) A. Haller, E. Bauer. Compt. Rend. 1908, 147, 824–826; b) G. Mehta,
R. V. Venkateswaran. Tetrahedron 2000, 56, 1399; c) K. Ishihara, T.
Yano. Org. Lett. 2004, 6, 1983.
Scheme 2. The proposed mechanism.
The proposed method has reversed selectivity in C-C bond
oxidation, as opposed to the known Baeyer-Villiger reaction,[3]
where intramolecular oxidation of the (O)C-CAr bond to the
(O)C-OCAr bond occurs in the first place. The substituent
moieties can be arranged in order of decreasing ease of oxidation
of the C-C(O) bond in the Baeyer-Villiger reaction[3] as follows:
4-Me-C6H4-C(O) >C6H5-C(O) > 4-Cl-C6H4-C(O) >Me-C(O) in
CAr-C(O)-CAlkyl. Furthermore, oxidation of the C-C(O) bond in
this reaction is usually non-selective and gives rise to a mixture
of products of oxidation of the (O)C-CAlkyl and (O)C-CAr bonds.
In addition, this reaction is intramolecular. The approach
proposed by us involves selective oxidation of (O)C-Me to (O)C-
OR with the (O)C-CAr bond remaining intact (Table 2) (i.e., iron-
catalyzed intermolecular anti-Baeyer-Villiger activation of the
(O)C-C bond), which allows one to selectively synthesize
derivatives of esters of benzoic and other carboxylic acids.
Thus, we proposed iron-catalyzed activation of the (O)C-C
bond in ketones. This method enables a direct synthesis of esters
by reactions between ketones and alcohols by converting the
(O)C-C bond to the (O)C-O bond. Thorough optimization of the
reaction conditions has been carried out. The method is based on
the inexpensive and commercially available catalyst (FeCl3),
oxidant ((NH4)2S2O8), and solvents (DCE, CCl4) without using
any ligands or additives. The reaction runs selectively and
involves activation of the (O)C-CAlkyl bond only, while the (O)C-
CAr bond remains intact.
6.
7.
a) Y. J. Park, J.-W. Park, C.-H. Jun. Acc. Chem. Res. 2008, 41, 222; b)
C.-H. Jun, H. Lee. J. Am. Chem. Soc. 1999, 121, 880; c) D.-Y. Lee, I.-J.
Kim, C.-H. Jun. Angew. Chem., Int. Ed. 2002, 41, 3031; d) F.-L. Zhang, K.
Hong, T.-J. Li, H. Park, J.-Q. Yu. Science 2016, 351, 6270, 252-256.
a) A. M. Dreis, C. J. Douglas. J. Am. Chem. Soc. 2009, 131, 412; b) M. T.
Wentzel, V. J. Reddy, T. K. Hyster, C. J. Douglas. Angew. Chem., Int. Ed.
2009, 48, 6121; c) J. P. Lutz, C. M. Rathbun, S. M. Stevenson, B. M.
Powell, T. S. Boman, C. E. Baxter, J. M. Zona, J. B. Johnson. J. Am.
Chem. Soc. 2012, 134, 715; d) C. M. Rathbun, J. B. Johnson. J. Am.
Chem. Soc. 2011, 133, 2031; e) Z.-Q. Lei, H. Li, Y. Li, X.-S. Zhang, K.
Chen, X. Wang, J. Sun, Z.-J. Shi. Angew. Chem., Int. Ed. 2012, 51, 2690;
f) J. Wang, W. Chen, S. Zuo, L. Liu, X. Zhang, J. Wang. Angew. Chem.,
Int. Ed. 2012, 51, 12334.
8.
a) M. Arisawa, M. Kuwajima, F. Toriyama, G. Li, M. Yamaguchi. Org. Lett.
2012, 14, 3804; b) O. Daugulis, M. Brookhart. Organometallics. 2004, 23,
527; c) A. Dermenci, R. E. Whittaker, G. Dong. Org. Lett. 2013, 15, 2242;
d) Y. Kuninobu, A. Kawata, K. Takai. J. Am. Chem. Soc. 2006, 128,
11368; e) Y. Kuninobu, H. Takata, A. Kawata, K. Takai. Org. Lett. 2008,
10, 3133; f) Y. Kuninobu, A. Kawata, M. Nishi, H. Takata, K. Takai. Chem.
Commun. 2008, 6360; g) Y. Kuninobu, A. Morita, M. Nishi, A. Kawata, K.
Takai. Org. Lett. 2009, 11, 2535; h) Y. Kuninobu, A. Kawata, M. Nishi, S.
S. Yudha, J. Chen, K. Takai. Chem. Asian J. 2009, 4, 1424; i) Y.
Kuninobu, H. Matsuzaki, M. Nishi, K. Takai. Org. Lett. 2011, 13, 2959; j)
F. Minisci, F. Recupero, F. Fontana, H.-R. Bjørsvik, L. Liguoric. Synlett
2002, 610; k) Y. Kuninobu, T. Uesugi, A. Kawata, K. Takai. Angew.
Chem., Int. Ed. 2011, 50, 10406; l) A. Kawata, K. Takata, Y. Kuninobu, K.
Takai. Angew. Chem., Int. Ed. 2007, 46, 7793; m) S. Biswas, S. Maiti, U.
Jana. Eur. J. Org. Chem. 2010, 15, 2861–2866; n) L. H. Huang, K.
Cheng, B. B. Yao, Y. J. Xie, Y. H. Zhang. J.Org. Chem. 2011, 76, 5732;
o) Y. Yuan, H. Zhu. Eur. J. Org. Chem. 2012, 329; p) S. Chiba, L. Zhang,
G. Y. Ang, B. W.-Q. Hui. Org. Lett. 2010, 12, 2052; q) C. He, S. Guo, L.
Huang, A. Lei. J. Am. Chem. Soc. 2010, 132, 8273; r) C. Zhang, P. Feng,
N. Jiao. J. Am. Chem. Soc. 2013, 135, 15257; s) S. Cai, F. Wang, C. Xi.
J. Org. Chem. 2012, 77, 2331; t) K. M. Steward, J. S. Johnson.Org. Lett.
2011, 13, 2426; u) W. Zhou, Y. Yang, Y. Liu, G.-J. Deng. Green Chem.
2013, 15,76; v) P. Feng, X. Sun, Y. Su, X. Li, L.−H. Zhang, X. Shi, N.
Experimental Section
General method of synthesis of 3a-f,a-d: 1a-h (0.0299 – 0.0532 g, 0.299
mmol, 1 eq.), 2a-d (0.0166 – 0.228 g, 0.224 mmol, 0.75 eq.), FeCl3 (0.0145 g,
0.0897 mmol, 0.3 eq.), (NH4)2S2O8 (0.1363 g, 0.598 mmol, 2 eq.), and
DCE/CCl4 (0.75 mL, 1/1) were stirred in Schottculture tubes (H × diam.
160 mm × 16 mm) at 120 °C for 3 h. Further, after adding a solution of 2a-d
(0.055 – 0.0763, 0.0748 mmol, 0.25 eq.) and DCE/CCl4 (0.08 mL, 1 / 1), the
reaction mixture was stirred at 120 °C for 3 h (3 times at 3-hour intervals).
Next it was stirred at 120 °C for 12 h. The yields of 3a-f,a-d weredetermined
by 1H NMR (CDCl3) after the filtration of the reaction mass through a short
pad (0.4 – 0.5 cm) of silica gel (0.015 – 0.040 mm) using 20 mL of DCM and
evaporation of solvent in vacuum. Products 3c,b and 3d,a-d were isolated by
gradient flash chromatography (eluent: petroleum ether / ethyl acetate).
−3391; w) K. Nakai, T. Kurahashi, S.
Jiao. Org. Lett. 2014, 16, 3388
Matsubara. Tetrahedron. 2015, 71 (26-27), 4512–4517; x) S. K. Murphy,
J.-W. Park, F. A. Cruz, V. M. Dong. Science 2015, 347 (6217), 56-60; y) I.
Bauer, H.-J. Knölker. Chem. Rev. 2015, 115 (9), 3170–3387; z) K. Wu, Z.
Huang, Y. Ma, A. Lei. RSC Adv. 2016, 6, 24349-24352.
9.
a) W. Kong, B. Li, X. Xu, Q. Song. J. Org. Chem. 2016, 81 (18), 8436–
8443; b) Z. Qi, S. Yu, X. Li. Org. Lett. 2016, 18 (4), 700–703; c) A. S.-K.
Tsang, A. Kapat, F. Schoenebeck. J. Am. Chem. Soc. 2016, 138 (2),
518–526; d) J.-P. Wan, Y. Lin, X. Cao, Y. Liu, L. Wei. Chem. Commun.
2016, 52, 1270-1273; e) Q. Xing, H. Lv, C. Xia, F. Li. Chem. Commun.
2016, 52, 489-492; f) Y. Zhou, C. Rao, S. Mai, Q. Song. J. Org. Chem.
2016, 81 (5), 2027–2034.
Acknowledgments.
The author is very grateful to Prof. Valentine P. Ananikov for
helpful discussions. The author also expresses their gratitude to