2358
M. E. Krafft et al.
LETTER
concentrated en vacuo and purified by flash column
Acknowledgment
chromatography to give the reduced product as a clear oil.
(13) NMR data: 1b,14 3b,2 4b,15 5b,16 6b,17 7b,18 8b,19 9b,20 11b,21
15b,22 17b and 18b,23 17c.24 Compound 2b: 1H NMR (300
MHz, CD2Cl2): d = 7.95 (m, 2 H), 7.55 (m, 1 H), 7.47 (m, 2
H), 6.78 (dt, J = 15.95, 6.9 Hz, 1 H), 6.09 (dd, J = 16.0, 1.4
Hz, 1 H), 2.96 (t, J = 7.2 Hz, 2 H), 2.20 (s, 3 H), 2.09 (tdd,
J = 7.0, 7.0, 1.5 Hz, 2 H), 1.71 (tt, J = 7.15, 7.15 Hz, 2 H),
1.29–1.53 (m, 10 H). 13C NMR (75 MHz, CD2Cl2): d =
200.5, 198.6, 148.8, 137.7, 133.2, 131.7, 129.0, 128.4, 38.9,
32.9, 29.9, 29.7, 29.6, 28.6, 27.0, 24.7. Compound 10b: 1H
NMR (300 MHz, CD2Cl2): d = 9.48 (d, J = 8.0 Hz, 1 H), 7.95
(m, 2 H), 7.55 (m, 1 H), 7.47 (m, 2 H), 6.85 (dt, J = 15.7, 6.6
Hz, 1 H), 6.09 (dd, J = 15.2, 7.7 Hz, 1 H), 2.96 (t, J = 7.2 Hz,
2 H), 2.32 (dt, J = 7.4, 7.2 Hz, 2 H), 1.71 (tt, J = 7.2, 6.9 Hz,
2 H), 1.50 (tt, J = 6.9, 6.9 Hz, 2 H) 1.35 (m, 8 H). 13C NMR
(75 MHz, CD2Cl2): d = 200.2, 194.1, 159.17, 137.4, 133.1,
132.9, 128.7, 1281, 38.7, 32.8, 29.6, 29.5, 29.4, 29.3, 28.0,
24.4. Compound 12b: 1H NMR (300 MHz, CD2Cl2): d =
7.93 (m, 2 H), 7.55 (m, 1 H), 7.46 (m, 2 H), 6.94 (dt, J = 15.7,
6.9 Hz, 1 H), 5.80 (dd, J = 15.4, 1.4 Hz, 1 H), 3.67 (s, 3 H),
2.94 (t, J = 7.4 Hz, 2 H), 2.19 (tdd, J = 7.9, 6.9, 1.1 Hz, 2 H),
1.71 (tt, J = 7.2, 6.8 Hz, 2 H), 1.24–1.52 (m, 10 H). 13C NMR
(75 MHz, CD2Cl2): d = 200.3, 167.1, 149.8, 137.9, 132.9,
128.7, 128.1, 120.9, 51.4, 38.7, 32.3, 29.6, 29.5, 29.4, 29.2,
28.2, 24.4.
Support of this research from the MDS Research Foundation and
the NSF is gratefully appreciated.
References and Notes
(1) Keinan, E.; Greenspoon, N. In Comprehensive Organic
Synthesis, Vol. 8; Trost, B. M., Ed.; Pergamon Press:
Oxford, 1991, Chap. 3.5.
(2) Saikia, A.; Gopal, M.; Romesh, B.; Boruah, C. Synlett 2005,
523.
(3) Lipshutz, B. H.; Sevesko, J. M. Angew. Chem. Int. Ed. 2003,
42, 4789.
(4) Miura, K.; Yamada, Y.; Tomita, M.; Hosomi, A. Synlett
2004, 1985.
(5) Moisan, L.; Hardouin, C.; Rousseau, B.; Doris, A.
Tetrahedron Lett. 2002, 43, 2013.
(6) Inoue, K.; Ishida, T.; Shibata, I.; Baba, A. Adv. Synth. Catal.
2002, 344, 283.
(7) Ranu, B. C.; Dutta, J.; Guchhait, S. K. Org. Lett. 2001, 3,
2603.
(8) Kawakami, T.; Miyatake, M.; Shibata, I.; Baba, A. J. Org.
Chem. 1996, 61, 376.
(9) Leusink, A. J.; Noltes, J. G. Tetrahedron Lett. 1966, 2221.
(10) Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am.
Chem. Soc. 1997, 119, 4911.
(14) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47, 6765.
(15) Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008,
130, 2424.
(16) Zimbron, J. M.; Seeger-Weibel, M.; Hirt, H.; Gallou, F.
Synthesis 2008, 1221.
(11) Enholm, E. J.; Kinter, K. S. J. Org. Chem. 1995, 60, 4850;
and references therein.
(12) All commercially procured chemicals were used as received.
Dichloromethane, triethylamine, diethyl ether, benzene
(C6D6) were distilled from calcium hydride. THF was
distilled from lithium aluminum hydride. Reagent grade
solvents were used for solvent extraction and organic
extracts were dried over anhyd Na2SO4. Silica gel 60 (230–
400 mesh ASTM) was used for flash chromatography with
anhyd hexane–EtOAc. 1H NMR spectra were recorded on
500 MHz Varian, 500 MHz Bruker or 300 MHz Varian
spectrometers. The proton chemical shifts (d) are reported as
parts per million relative to 7.26 ppm for CDCl3, 7.14 ppm
for C6D6, 5.32 for CD2Cl2.
(17) Dohner, B. R.; Saunders, W. H. J. Am. Chem. Soc. 1986,
108, 245.
(18) Cao, J.-J.; Zhou, F.; Zhou, J. Angew. Chem. Int. Ed. 2010,
49, 4976.
(19) Crotti, P.; Di Bussolo, V.; Favero, L.; Franco, M.; Pineschl,
M.; Napolitano, E. Tetrahedron 1999, 55, 5853.
(20) Holzer, M.; Ziegler, S.; Albrecht, B.; Kronenberger, B.;
Kaul, A.; Bartenschlager, R.; Kattner, L.; Klien, C. D.;
Hartmann, R. W. Molecules 2008, 13, 1081.
(21) Lebel, H. Organometallics 2008, 27, 2676.
(22) Chow, Y. L.; Cheng, X. Can. J. Chem. 1991, 69, 1575.
(23) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.;
Wang, X.; Krische, M. J. J. Am. Chem. Soc. 2001, 123, 5112.
(24) Nakamura, M.; Miki, M.; Majima, T. J. Chem. Soc., Perkin
Trans. 1 2000, 415.
Typical Procedure for the Selective Reduction of Aryl
Enones: To a stirred solution of the aryl vinyl ketone (1.0
mmol) in benzene (3.3 mL, 0.3 M) in a resealable tube at r.t.
under argon was added tributyltin hydride (0.58 g, 2.0
mmol). The reaction mixture was subsequently heated to
80 °C for 3 h. Upon completion the reaction mixture was
Synlett 2011, No. 16, 2355–2358 © Thieme Stuttgart · New York