Page 3 of 4
Journal Name
RSC Advances
COMMUNICATION
DOI: 10.1039/C5RA00484E
saturated alcohols were obtained in 78ꢀ92% yields, which established complete, the solvent was removed under reduced pressure. The crude
our findings on the baseꢀcontrolled chemoselectivity (entries 1ꢀ12, 22). residue was purified by flash column silica gel chromatography
Finally, an α,βꢀunsaturated ketone 1aa bearing a nonꢀpolarized double (petroleum ether/ ethyl acetate: 95:5 to 90:10) to yield the product 2.
bond was subjected to the condition (eqn. (3)). To our delight, the Notes and references
a
present catalytic system selectively reduced the enone and kept the nonꢀ
Chemical Engineering College, Nanjing University of Science &
polarized double bond.
Technology, Nanjing, Jiangsu 210094, P. R. China.
Electronic Supplementary Information (ESI) available: Experimental
1
13
19
details, HꢀNMR, CꢀNMR, and FꢀNMR spectra of all isolated
products. See DOI: 10.1039/c000000x/
1
Selected reviews: (a) R. A. W. Johnstone, A. H. Wilby, I. D.
Entwistle, Chem. Rev. 1985, 85, 129; (2) R. Noyori, S. Hashiguchi,
Acc. Chem. Res. 1997, 30, 97; (c) J.ꢀi. Ito, H. Nishiyama,
Tetrahedron Lett. 2014, 55, 3133.
A plausible mechanism is proposed in Scheme 1 to explain the
selective transfer hydrogenation of α,βꢀunsaturated ketones to the
1
7
saturated ketones or alcohols. In the initial step, the active catalyst
was generated via the sequences showed in eqns. (1) and (2). The αꢀ
enone 1a then coordinated to , followed by a hydride transfer to give
intermediate , which underwent an enolization to produce . The
resulting Irꢀenolate was protonated by 2ꢀPrOH to give product 2a and
produced the catalytic species , which sequently underwent a
elimination to reproduce the active catalyst . Although detailed
A
2
(a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wileyꢀ
VCH, Weinheim, 1994; (b) M. Bartók, A. Molnár, Heterogeneous
Catalytical Hydrogenation, WileyꢀVCH, Weinheim, Chapter 16. pp.
843ꢀ908, 1997; (c) S. Nishimura, Handbook of Heterogeneous
A
B
C
C
D
βꢀ
Catalytic Hydrogenation for Organic Synthesis, WileyꢀVCH,
A
Weinheim, 2001; (d) Fine Chenicals through Heterogeneous
Catalysis, Eds: R. A. Sheldon, H. van Bekkum, WileyꢀVCH,
Weinheim, 2001.
mechanism for the secondary hydrogenation of the resulting ketones in
the presence of KOH is not clear. A base promoted Meerweinꢀ
PonndorfꢀVerley type reaction may be responsible for this unexpected
3
4
5
Selected reference see: (a) G. Szöllösi, B. Török, L. Baranyi and M.
Bartók, J. Catal. 1998, 179, 619; (b) G. Szöllősi, Á. Mastalir, Á.
Molnár and M. Bartók, React. Kinet. Catal. Lett. 1996, 57, 29; (c) A.
Mori, Y. Miyakawa, E. Ohashi, T. Haga, T. Maegawa, H. Sajiki, Org.
18
results. More detailed studies are required to clarify the detailed
mechanism.
Lett. 2006, 8, 3279; (d) S. Jagtap, Y. Kaji, A. Fukuoka, K. Hara,
Chem. Commun. 2014, 50, 5046.
(a) M. Sugiura, N. Sato, S. Kotani, M. Nakajima, Chem. Commun.
2
008, 4309; (b) A. Pelss, E. T. Kumpulainen, A. M. Koskinen, J. Org.
Chem. 2009, 74, 7598; (c) M. Benohoud, S. Tuokko, P. M. Pihko,
Chem. Eur. J. 2011, 17, 8404; (d) J.ꢀY. Shang, F. Li, X.ꢀF. Bai, J.ꢀX.
Jiang, K.ꢀF. Yang, G.ꢀQ. Lai, L.ꢀW. Xu, Eur. J. Org. Chem. 2012,
2
809.
(a) B. C. Ranu, S. Samanta, J. Org. Chem. 2003, 68, 7130; (b) A. T.
Russo, K. L. Amezcua, V. A. Huynh, Z. M. Rousslang, D. B. Cordes,
Tetrahedron Lett. 2011, 52, 6823.
6
7
Q. Liu, J. Li, X.ꢀX. Shen, R.ꢀG. Xing, J. Yang, Z. Liu, B. Zhou,
Tetrahedron Lett. 2009, 50, 1026.
Scheme 1. Proposed Catalytic Cycle.
(a) S. Bolaño, L. Gonsalvi, F. Zanobini, F. Vizza, V. Bertolasi, A.
Romerosa, M. Peruzzini, J. Mol. Catal. A: Chem. 2004, 224, 61; (b)
C. A. Mebi, R. P. Nair, B. J. Frost, Organometallics 2007, 26, 429; (c)
S. Naskar, M. Bhattacharjee, Tetrahedron Lett. 2007, 48, 465.
(a) Y. Sasson, J. Blum, Tetrahedron Lett. 1971, 12, 2167; (b) J. Blum,
Y. Sasson, S. Iflah, Tetrahedron Lett. 1972, 13, 1015; (c) Y. Sasson,
J. Blum, J. Org. Chem. 1975, 40, 1887; (d) I. Ryu, T. Doi, T.
Fukuyama, J. Horiguchi, T. Okamura, Synlett 2006, 721;
Conclusions
*
We have demonstrated that [IrCp Cl
]
2 2
was a highly effective and
versatile catalyst for the transfer hydrogenation of α,βꢀunsaturated
ketones with 2ꢀPrOH. The simplicity of this protocol employing
commercially available catalyst makes it attractive for laboratory
8
9
hydrogenations without the need for hazardous H
2
and other costly
hydrogen sources. By changing the base from K
2
CO to KOH, the
3
(a) D. Beaupere, P. Bauer and R. Uzan, Can. J. Chem. 1979, 57, 218;
products could be switched from saturated ketones to saturated
alcohols.
(b) Z. Baán, Z. Finta, G. Keglevich, I. Hermecz, Green Chem. 2009,
11, 1937.
1
1
0
1
X. Li, L. Li, Y. Tang, L. Zhong, L. Cun, J. Zhu, J. Liao, J. Deng, J.
Org. Chem. 2010, 75, 2981.
Experimental section
An Ar purged flameꢀdried Schlenk tube (25 mL) containing α,βꢀ
(a) B. Basu, M. H. Bhuiyan, P. Das and I. Hossain, Tetrahedron Lett.
*
unsaturated ketone
1
(0.40 mmol, 1 equiv), [IrCp Cl
]
2 2
(1 mol%), and
2
003, 44, 8931; (b) B. Basu, S. Das, P. Das, A. K. Nanda,
K
2
CO
3
(5 mol%) were added 2ꢀPrOH (4 mL). The reaction mixture was
Tetrahedron Lett. 2005, 46, 8591; (c) K. Fujimoto, T. Yoneda, H.
Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 2014, 53, 1127; (d) D. B.
o
stirred at 85 C for 5 h unless stated otherwise. After the reaction was
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3