10.1002/anie.201916651
Angewandte Chemie International Edition
COMMUNICATION
enrich the chemistry of borazine as well as the concept of
homoaromaticity.
1993, 98, 5648-5652; d) S. Grimme, S. Ehrlich, Goerigk, L. J. Comput.
Chem. 2011, 32, 1456-1465; e) S. Grimme, J. Antony, S. Ehrlich, H.
Krieg, J. Chem. Phys. 2010, 132, 154104-154123; f) F. Weigend, M.
Hꢀser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143-152; g)
M. J. Frisch, et al., Gaussian 16, Revision C.01, Gaussian, Inc.,
Wallingford, CT, 2019, See SI for the full reference; h) T. Lu, F. Chen, J.
Comput. Chem. 2012, 33, 580-592.
Acknowledgements
This work was supported by the National Natural Science Foundation of
China (Nos. 21725201, 21890721, 21690061). We thank Prof. Shang-Da
Jiang and Dr. Zifeng Zhao for the help of experimental measurements. We
thank Prof. Shengfa Ye, Prof. Jun Zhu, Dr. Junnian Wei, Dr. Rui Feng and
Mr. Zhe Huang for the theoretical discussions. Theoretical calculations of
this work was supported by High-performance Computing Platform of
Peking University
[9] For selected trishomoaromatic B3 dianions, see: a) W. Lößlein, H. Pritzkow,
P. von R. Schleyer, L. R. Schmitz, W. Siebert, Angew. Chem. Int. Ed.
2000, 39, 1276-1278; Angew. Chem. 2000, 112, 1333-1335; b) W.
Lößlein, H. Pritzkow, P. von R. Schleyer, L. R. Schmitz, W. Siebert, Eur.
J. Inorg. Chem. 2001, 1949-1956; c) Y. Sahin, A. Ziegler, T. Happel, H.
Meyer, M. J. Bayer, H. Pritzkow, W. Massa, M. Hofmann, P. von R.
Schleyer, W. Siebert, A. Berndt, J. Organomet. Chem. 2003, 680, 244-
256.
Keywords: alkali metals • borazine • homoaromaticity • reduction
• 3c-2e interaction
[10] M. Hofmann, A. Berndt, Heteroat. Chem. 2006, 17, 224-237.
[11] For selected Hückel B3 systems, see: a) E. D. Jemmis, G. Subramanian,
G. N. Srinivas, J. Am. Chem. Soc. 1992, 114, 7939-7941; b) A. A. Korkin,
P. von R. Schleyer, M. L. McKee, Inorg. Chem. 1995, 34, 961-977; c) E.
D. Jemmis, G. Subramanian, Inorg. Chem. 1995, 34, 6559-6561; d) T.
Kupfer, H. Braunschweig, K. Radacki, Angew. Chem. Int. Ed. 2015, 54,
15084-15088; Angew. Chem. 2015, 127, 15299-15303; e) J. Jin, G.
Wang, M. Zhou, D. M. Andrada, M. Hermann, G. Frenking, Angew. Chem.
Int. Ed. 2016, 55, 2078-2082; Angew. Chem. 2016, 128, 2118-2122.
[1]
Selected reviews: a) P. von R. Schleyer, Chem. Rev. 2001, 101, 1115-
1118; b) M. Randić, Chem. Rev. 2003, 103, 3449-3606; c) A. T. Balaban,
P. von R. Schleyer, H. S. Rzepa, Chem. Rev. 2005, 105, 3436-3447; d)
C. W. Landorf, M. M. Haley, Angew. Chem. Int. Ed. 2006, 45, 3914-3936;
Angew. Chem. 2006, 118, 4018-4040; e) J. Chen, G. Jia, Coord. Chem.
Rev. 2013, 257, 2491-2521; f) T. M. Krygowski, H. Szatylowicz, O. A.
Stasyuk, J. Dominikowska, M. Palusiak, Chem. Rev. 2014, 114, 6383-
6422; g) B. J. Frogley, L. J. Wright, Coord. Chem. Rev. 2014, 270-271,
151-166; h) S. Zhang, W.-X. Zhang, Z. Xi, Acc. Chem. Res. 2015, 48,
1823-1831; i) L. Ji, S. Griesbeck, T. B. Marder, Chem. Sci. 2017, 8, 846-
863; j) Y. Hua, H. Zhang, H. Xia, Chin. J. Org. Chem. 2018, 38, 11-28; k)
J. Wei, W.-X. Zhang, Z. Xi, Chem. Sci. 2018, 9, 560-568; l) C. Zhu, H.
Xia, Acc. Chem. Res. 2018, 51, 1691-1700; m) W.-L. Li, H.-S. Hu, Y.-F.
Zhao, X. Chen, T.-T. Chen, T. Jian, L.-S. Wang, J. Li, Sci. Sin. Chim.
2018, 48, 98-107; n) D. Chen, Q. Xie, J. Zhu, Acc. Chem. Res. 2019, 52,
1449-1460; o) T. Jian, X. Chen, S.-D. Li, A. I. Boldyrev, J. Li, L.-S. Wang,
Chem. Soc. Rev. 2019, 48, 3550-3591.
[12]
For selected monohomoaromatic B3 systems, see: a) D. Steiner, H.-J.
Winkler, C. Balzereit, T. Happel, M. Hofmann, G. Subramanian, P. von
R. Schleyer, W. Massa, A. Berndt, Angew. Chem. Int. Ed. Engl. 1996, 35,
1990-1992; Angew. Chem. 1996, 108, 2123-2125.
[13]
For selected (+σ)-double aromatic B3 systems, see: a) M. Unverzagt,
G. Subramanian, M. Hofmann, P. von R. Schleyer, S. Berger, K. Harms,
W. Massa, A. Berndt, Angew. Chem. Int. Ed. Engl. 1997, 36, 1469-1472;
Angew. Chem. 1997, 109, 1567-1568; b) D. Scheschkewitz, A. Ghaffari,
P. Amseis, M. Unverzagt, G. Subramanian, M. Hofmann, P. von R.
Schleyer, H. F. Schaefer III, G. Geiseler, W. Massa, A. Berndt, Angew.
Chem. Int. Ed. 2000, 39, 1272-1275; Angew. Chem. 2000, 112, 1329-
1332; c) M. Hofmann, D. Scheschkewitz, A. Ghaffari, G. Geiseler, W.
Massa, H. F. Schaefer III, A. Berndt, J. Mol. Model. 2000, 6, 257-271; d)
C. Präsang, A. Mlodzianowska, Y. Sahin, M. Hofmann, G. Geiseler,W.
Massa, A. Berndt, Angew. Chem. Int. Ed. 2002, 41, 3380-3382; Angew.
Chem. 2002, 114, 3529-3531; e) C. Präsang, A. Mlodzianowska, G.
Geiseler, W. Massa, M. Hofmann, A. Berndt, Pure Appl. Chem. 2003, 75,
1175-1182.
[2]
[3]
Selected examples: a) M. Faraday, Trans. R. Soc. London B Biol. Sci.
1825, 115, 440-466; b) C. Zhu, S. Li, M. Luo, X. Zhou, Y. Niu, M. Lin, J.
Zhu, Z. Cao, X. Lu, T. Wen, Z. Xie, P. von R. Schleyer, H. Xia, Nat. Chem.
2013, 5, 698-703; c) W.-L. Li, Q. Chen, W.-J. Tian, H. Bai, Y.-F. Zhao,
H.-S. Hu, Jun Li, H.-J. Zhai, S.-D. Li, L.-S. Wang, J. Am. Chem. Soc.
2014, 136, 12257-12260.
a) A. Sekiguchi, K. Ebata, C. Kabuto, H. Sakura, J. Am. Chem. Soc. 1991,
113, 1464-1465; b) S. Koseki, A. Toyota, J. Phys. Chem. A 1997, 101,
5712-5718; c) K. Ebata, W. Setaka, T. Inoue, C. Kabuto, M. Kira, H.
Sakurai, J. Am. Chem. Soc. 1998, 120, 1335-1336; d) F. Feixas, E.
Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231-13238; e)
A. Falceto, D. Casanova, P. Alemany, S. Alvarez, Chem. Eur. J. 2014,
20, 14674-14689.
[14] For selected σ-aromatic B3 systems,see: a) G. Kodama, R. W. Parry, J.
C. Carter, J. Am. Chem. Soc. 1959, 81, 3534-3538; b) J. E. Subotnik, A.
Sodt, M. Head-Gordon, Phys. Chem. Chem. Phys. 2007, 9, 5522-5530;
c) N. Schulenberg, H. Wadepohl, H.-J. Himmel, Angew. Chem. Int. Ed.
2011, 50, 10444-10447; Angew. Chem. 2011, 123, 10628-10631; d) B.
Su, R. Kinjo, Synthesis 2017, 49, 2985-3034; e) A. Widera, E. Kaifer, H.
Wadepohl, H.-J. Himmel, Chem. Eur. J. 2018, 24, 1209-1216.
[4]
[5]
W. Huang, F. Dulong, T. Wu, S. I. Khan, J. T. Miller, T. Cantat, P. L.
Diaconescu, Nat. Commun. 2013, 4, 1448.
a) A. Stock, E. Pohland, Ber. Dtsch. Chem. Ges. B 1926, 59, 2215-2223;
b) B. Kiran, A. K. Phukan, E. D. Jemmis, Inorg. Chem. 2001, 40,
3615−3618; c) R. Islas, E. Chamorro, J. Robles, T. Heine, C. J. Santos,
G. Merino, Struct. Chem. 2007, 18, 833-839.
[15]
For selected reviews, see: a) R. V. Williams, Chem. Rev. 2001, 101,
1185-1204; b) H.-J. Himmel. Angew. Chem. Int. Ed. 2019, 58, 11600-
11617; Angew. Chem. 2019, 131, 11724-11742.
[16] a) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982-
9985; b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-
222.
[6]
[7]
D. Bonifazi, F. Fasano, M. M. L-Garcia, D. Marinelli, H. Oubaha J.
Tasseroul, Chem. Commun. 2015, 51, 15222-15236.
S. Kervyn, O. Fenwick, F. D. Stasio, Y. S. Shin, J. Wouters, G. Accorsi,
S. Osella, D. Beljonne, F. Cacialli, D. Bonifazi, Chem. Eur. J. 2013, 19,
7771-7779.
[17]
P. Lei, Y. Ding, X. Zhang, A. Adijiang, H. Li, Y. Ling, J. An, Org. Lett.
2018, 20, 3439-3442
[8]
a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater.
Phys. 1988, 37, 785-789; b) B. Miehlich, A. Savin, H. Stoll, H. Preuss,
Chem. Phys. Lett. 1989, 157, 200-206; c) A. D. Becke, J. Chem. Phys.
This article is protected by copyright. All rights reserved.