C O M M U N I C A T I O N S
the substrate. It is more likely that some homocoupling of
phenylboronic acid occurs in these cases.28,29 In the case of
p-nitrobromobenzene a remarkable one-pot cross-coupling followed
by reduction occurs, to yield first 100% 4-phenyl-nitrobenzene that
is subsequently hydrogenated to 4-phenyl-aminobenzene. This
surprising reaction may be due to the presence of the formate ions,
that can give H2 in the presence of palladium and water.30
We have shown here that designed copper and copper-based
nanocolloids can catalyze the Suzuki reaction, and may eventually
present an inexpensive and eco-friendly alternative to noble metal
catalysts. Further studies on the structure and activity scope of these
new materials are now in progress.
Acknowledgment. We thank Professors M. T. Reetz and H.
Bo¨nnemann for discussions and preprints, Dr. E. Eiser for perform-
ing the XR diffraction measurements, and Hans F. M. Boelens for
advice on experimental design.
Supporting Information Available: Detailed experimental pro-
cedures for the synthesis of catalysts 1-15; procedures for performing
the cross-coupling reactions; graphs showing time-resolved reaction
profiles and kinetic analysis (PDF). This material is available free of
Figure 2. Time-resolved reaction profiles observed for the Suzuki coupling
of phenylboronic acid and iodobenzene using various colloid catalysts.
Broken lines represent duplicate reactions. Standard reaction conditions:
0.50 mmol iodobenzene, 0.75 mmol phenyl boronic acid, 1.5 mmol K2-
CO3, 0.01 mmol catalyst (2 mol % total metal nanocluster relative to PhI),
12.5 mL of DMF, 110 °C, N2 atmosphere.
References
(1) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
(2) Ishiyama, T.; Kizaki, H.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1993,
34, 7595.
(3) Suzuki, A.; Miyaura, N. J. Synth. Org. Chem., Jpn. 1993, 51, 1043.
(4) Suzuki, A. Pure Appl. Chem. 1994, 66, 213.
(5) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. ReV.
2002, 102, 1359.
Table 2. Colloid-Catalyzed Suzuki Coupling with Various
Substratesa
(6) Saito, S.; Ohtani, S.; Miyaura, N. J. Org. Chem. 1997, 62, 8024.
(7) Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3,
3049.
(8) Reetz, M. T.; Westermann, E. Angew. Chem., Int. Ed.. 2000, 39, 165.
(9) Reetz, M. T.; Maase, M. AdV. Mater. 1999, 11, 773.
(10) Kim, S.-W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002,
124, 7643.
(11) Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Sasson, Y. J. Org. Chem.
2000, 65, 3107.
(12) Bradley, J. S.; Hill, E.; Leonowicz, M. E.; Witzke, H. J. Mol. Catal. 1987,
41, 59.
(13) Lewis, L. N. Chem. ReV. 1993, 93, 2693.
(14) Bo¨nnemann, H.; Brijoux, W. Nanostruct. Mater. 1995, 5, 135.
(15) Bo¨nnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Joussen, T.;
Korall, B. Angew. Chem. 1991, 103, 1344.
(16) Schmid, G.; Maihack, V.; Lantermann, F.; Peschel, S. J. Chem. Soc.,
Dalton Trans. 1996, 589.
(17) Moiseev, I. I.; Stromnova, T. A.; Vargaftik, M. N. J. Mol. Catal. 1994,
86, 71.
(18) Widegren, J. A.; Finke, R. G. J. Mol. Catal. 2002. In press.
(19) Aiken, J. D.; Lin, Y.; Finke, R. G. J. Mol. Catal. A: Chem. 1996, 114,
29.
(20) Reetz, M. T.; Breinbauer, R.; Wanninger, K. Tetrahedron Lett. 1996, 37,
4499.
(21) Alphonse, F. A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G.
Synlett 2002, 447.
a See Table 1 for reaction conditions. b GC yield, corrected for the
presence of an internal standard. Only the cross-coupling product was
observed, unless otherwise noted. c Biphenyl (12%) as byproduct. d 100%
conversion to 1,4-diphenylbenzene (terphenyl) was observed, plus 10-12%
biphenyl. e 4-Phenyl-1-nitrobenzene was formed in 100% yield after 4 h,
and then reduced in ca. 50% yield to 4-phenyl-aniline after a further 20 h.
f 2-Chlorobiphenyl (25%) and biphenyl (10%) were observed.
(22) Boland, G. M.; Donnelly, D. M. X.; Finet, J.-P.; Rea, M. D. J. Chem.
Soc., Perkin Trans. 1 1996, 2591.
(23) Savarin, C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149.
(24) Liu, X. X.; Deng, M. Z. Chem. Commun. 2002, 622.
(25) Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. Tetrahedron Lett. 1999,
40, 2657.
(26) For a discussion, see: Godbert, S. In Design and Analysis in Chemical
Research; Tranter, R. L., Ed., Sheffield Academic Press: Sheffield,
England, 2000; pp 188-236.
(27) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2389.
(28) Lehmler, H. J.; Robertson, L. W. Chemosphere 2001, 45, 1119.
(29) Lehmler, H.-J.; Brock, C. P.; Patrick, B.; Robertson, L. W. In PCBs: :
Recent Advances in Environmental Toxicology and Health Effects;
Robertson, L. W., Hansen, L. G., Eds.; The University Press of
Kentucky: Lexington, KY, 2001; p 57.
Further reactions confirmed that these novel cross-coupling
catalysts are active over a range of aromatic substrates (see Table
2). In three of the experiments (Table 2, entries 3, 4, and 7), ca.
10% biphenyl is also observed. The amount of copper in these
experiments is too small to account for this biphenyl forming via
the stoichiometric Ullmann27 reaction, and in any case no 4,4′-
dimethylbiphenyl was observed when p-iodotoluene was used as
(30) Wiener, H.; Blum, J.; Feilchenfeld, H.; Sasson, Y.; Zalmanov, N. J. Catal.
1988, 110, 184.
JA027716+
9
J. AM. CHEM. SOC. VOL. 124, NO. 40, 2002 11859