Catalysis Science & Technology
Paper
General procedure for the photocatalytic Suzuki coupling
reaction by Pd@PDA photocatalysts
Impact (DPMEIKF201310) for financially supporting this
research.
Taking Pd@PDA-CL as an example: a mixture of iodobenzene
(1 mmol), phenylboronic acid (1.1 mmol), K2CO3 (1.5 mmol) Notes and references
and 20 mg Pd@PDA-CL (3.2 wt% Pd content) in 3 mL of
1 N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A.,
DMF/H2O (vol : vol = 1 : 1) was stirred under an argon atmo-
sphere with two white LED lamps (12 W) for a certain period
of time. After the reaction, the catalyst was recycled by filtra-
tion and the organic phase of the filtrate was extracted with
EtOAc, washed three times with water and dried over Na2SO4.
The pure product was then isolated by silica chromatography
using petroleum ether/EtOAc mixtures as the eluent.
2006, 103, 15729.
2 A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner,
Science, 1999, 285, 692.
3 Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang,
Chem. Mater., 2015, 27, 1921.
4 D. Mills, Sol. Energy, 2004, 76, 19.
5 C. Yu, G. Li, S. Kumar, K. Yang and R. Jin, Adv. Mater.,
2014, 26, 892.
Characterization of catalysts
6 J. Zhao, C. Chen and W. Ma, Top. Catal., 2005, 35, 269.
7 X. H. Li and M. Antonietti, Chem. Soc. Rev., 2013, 42, 6593.
8 Q. Xiao, S. Sarina, E. Jaatinen, J. Jia, D. P. Arnold, H. Liu and
H. Zhu, Green Chem., 2014, 16, 4272.
9 Q. Xiao, S. Sarina, A. Bo, J. Jia, H. Liu, D. P. Arnold, Y. Huang,
H. Wu and H. Zhu, ACS Catal., 2014, 4, 1725.
10 R. Long, Z. Rao, K. Mao, Y. Li, C. Zhang, Q. Liu, C. Wang, Z.
Li, X. Wu and Y. Xiong, Angew. Chem., Int. Ed., 2015, 54, 2425.
11 S. Sarina, H. Zhu, Q. Xiao, E. Jaatinen, J. Jia, Y. Huang, Z.
Zheng and H. Wu, Angew. Chem., Int. Ed., 2014, 53, 2935.
12 S. H. Lee, J. H. Kim and C. B. Park, Chem. – Eur. J., 2013, 19,
4392.
13 J. H. Kim, M. Lee, J. S. Lee and C. B. Park, Angew. Chem., Int.
Ed., 2012, 51, 517.
14 J. Ryu, S. H. Lee, D. H. Nam and C. B. Park, Adv. Mater.,
2011, 23, 1883.
15 Y. Liu, K. Ai and L. Lu, Chem. Rev., 2014, 114, 5057.
16 M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H.
Ryu, T. S. Kim, J. K. Park, H. Lee and J. W. Choi, Adv. Mater.,
2013, 25, 1571.
17 G. Kwon, A. K. Kota, Y. Li, A. Sohani, J. M. Mabry and A.
Tuteja, Adv. Mater., 2012, 24, 3666.
UV-vis diffuse reflectance spectra were recorded at room temper-
ature on a Thermo Fisher Scientific EV220 spectrophotometer.
NMR measurements were recorded on Bruker AVANCE 500 (III)
systems using CDCl3 as the solvent. FT-IR spectra were recorded
on a Nicolet iS10 FTIR instrument (Thermo Fisher Scientific,
USA). The detailed morphologies of the photocatalysts were
observed with a field emission scanning electron microscope
(FE-SEM, S4800, Hitachi) and a field emission high resolution
transmission electron microscope (FE-HRTEM, Tecnai G2 F20,
FEI). Inductively coupled plasma analysis (ICP) was performed
on a spectrometer (Optima 7300 V, PerkinElmer). The crystal
structure data of the as-synthesized samples was obtained from
an X-ray diffractometer (XRD, D8 Advance, Bruker AXS) from
10° to 80°, using Cu Kα (λ = 1.54 Å) radiation. The electron para-
magnetic resonance (EPR) spectra were obtained on a spectro-
meter (A300-10/12, Bruker). Flash column chromatography was
performed by employing 200–300 mesh silica gel. Thin-layer
chromatography (TLC) was performed with silica gel HSGF254.
Conclusions
In summary, mussel-inspired polydopamine nanofilm has been
developed as a light-harvesting interface for heterogeneous pal-
ladium catalyzed coupling reactions under irradiation of visible
light. Photocatalysts have been prepared by an in situ growth of
palladium nanocrystals on polydopamine nanofilms and used
for photocatalytic Suzuki coupling reactions involving a broad
range of aryl bromides/iodides and arylboronic acid substrates.
The polydopamine based photocatalysts could be supported on
various carriers regardless of their size or morphology, and are
easily recycled and reused. A plausible photocatalytic mecha-
nism has been proposed including light-harvesting, photoelec-
tron–hole separation and transfer processes. This strategy also
has potential for other noble metals such as platinum, indium
and gold photocatalytic organic reactions such as couplings,
reductions and oxidations.
18 K. Kang, S. Lee, R. Kim, I. S. Choi and Y. Nam, Angew.
Chem., Int. Ed., 2012, 51, 13101.
19 J. Stritzker, L. Kirscher, M. Scadeng, N. C. Deliolanis, S.
Morscher, P. Symvoulidis, K. Schaefer, Q. Zhang, L. Buckel,
M. Hess, U. Donat, W. G. Bradley, V. Ntziachristos and A. A.
Szalay, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 3316.
20 H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith,
Science, 2007, 318, 426.
21 I. F. Vecchia, P. Cerruti, G. Gentile, M. E. Errico, V. Ambrogi,
G. D'Errico, S. Longobardi, A. Napolitano, L. Paduano, C.
Carfagna and M. DIschia, Biomacromolecules, 2014, 15, 3811.
22 A. Pezzella, A. Iadonisi, S. Valerio, L. Panzella, A. Napolitano, M.
Adinolfi and M. DIschia, J. Am. Chem. Soc., 2009, 131, 15270.
23 C. T. Chen, C. Chuang, J. Cao, V. Ball, D. Ruch and M. J.
Buehler, Nat. Commun., 2014, 5, 3859.
24 M. DIschia, A. Napolitano, V. Ball, C. Chen and M. J.
Buehler, Acc. Chem. Res., 2014, 47, 3541.
Acknowledgements
The authors acknowledge the National Natural Science Founda-
tion of China (NSFC 51403236 and 51021001) and State Key
Laboratory of Disaster Prevention & Mitigation of Explosion &
25 A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hansonc, T.
Sarnad, I. R. Gentlee and P. Meredith, Proc. Natl. Acad. Sci.
U. S. A., 2012, 109, 8943.
This journal is © The Royal Society of Chemistry 2015
Catal. Sci. Technol.