Advanced Synthesis & Catalysis
10.1002/adsc.201900959
electron-rich (het)arenes can be converted smoothly
Rolston, D.-P. Kontoyiannis, J. Clin. Microbiol. 2012,
50, 1552-1557.
into CF
3
S(O) decorated products with these reagents
in good to excellent yields. Considering the readily
available reagents and mild conditions (see the SI,
Supporting Table 1), the described protocol promises
more applications in medicinal chemistry and related
fields.
[
1
4] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91,
65-195.
[5] a) T. Silverstone, J. Fincham, J. Br. Plumley, J. Clin.
Pharmacol. 1979, 7, 353-356; b) N. Aswapokee, H. C.
Neu, Antimicrob. Agents Chemother. 1979, 15, 444-446;
c) A. S. Moffat, Science 1993, 261, 550-551.
Experimental Section
[
6] S. Noritake, N. Shibata, S. Nakamura, T. Toru, M.
Shiro, Chem. J. Org. Chem. 2008, 3465-3468.
General Procedure for Fluoroalkanesulfinylation of
Electron-Rich (Het)Arenes (3a-3z, 4a-4d)
[7] X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015,
15, 731-764.
1
A mixture of fluoroalkyl heteroaryl sulfone 1 (1.0 mmol,
[
8] a) N. R. Patel, R. L. Kirchmeier, Inorg. Chem. 1992,
1, 2537-2540; b) R. P. Singh, G. Cao, R. L.
Kirchmeier, J. M. Shreeve, J. Org. Chem. 1999, 64,
873-2875.
1
.0 equiv) and (het)arene (1.0 mmol, 1.0 equiv) were
added to a dry Schlenk tube. The tube was evacuated and
backfilled with pure N for 3 times. Then, Ph P(O)Cl (212
μL, 1.0 mmol, 1.0 equiv) and dry MeCN (5.0 mL) were
added with syringe under N atmosphere. Then the mixture
3
2
2
2
2
[9] a) C.-A. Burton, J. M. Shreeve, Inorg. Chem. 1977, 16,
1039-1042; b) V. D. Romanenko, C. Thoumazet, V.
Lavallo, F. S. Tham, G. Bertrand, Chem. Commun.
2003, 1680-1681; c) M. Sukopp, O. Kuhn, C.
Groening, M. Keil, J. J. Longlet, WO2008055877A1,
2008.
o
was stirred at 60 C for 1 h. After the reaction was
complete, the solvent was removed under reduced pressure
and the residue was purified by column chromatography
on silica gel by using a mixture of petroleum ether/EtOAc
as an eluent to provide the desired products 3 or 4.
[
[
[
10] C. Wakselman, M. Tordeux, C. Freslon, L. Saint-
Jalmes, Synlett 2001, 550-552.
Acknowledgements
11] X. Zhao, A. Wei, B. Yang, T. Li, Q. Li, D. Qiu, K.
Lu, J. Org. Chem. 2017, 82, 9175-9181.
This work was supported by the National Basic Research
Program of China (2015CB931900), the National Natural
Science Foundation of China (21672187, 21632009, 21421002,
12] D.-W. Sun, X. Jiang, M. Jiang, Y. Lin, J.-T. Liu,
Chem. J. Org. Chem. 2017, 3505-3511.
2
1472221), the Key Programs of the Chinese Academy of
Sciences (KGZD-EW-T08), the Key Research Program of
Frontier Sciences of CAS (QYZDJ- SSW-SLH049), and ZJNSF
(LZ17H300002).
[13] Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127,
3112-13113.
1
[
14] H. Chachignon, D. Cahard, J. Fluorine Chem. 2017,
98, 82-88.
References
1
[
1] a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur,
Chem. Soc. Rev. 2008, 37, 320-330; b) K. Mꢀller, C.
Faeh, F. Diederich, Science 2007, 317, 1881-1886; c) J.
Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A.
E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu,
Chem. Rev. 2014, 114, 2432-2506; d) W. K. Hagmann,
J. Med. Chem. 2008, 51, 4359-4369; e) Q. Liu, C. Ni, J.
Hu, Natl. Sci. Rev. 2017, 4, 303-325.
[15] a) M. J. Moschitto, R. B. Silverman, Org. Lett. 2018,
20, 4589-4592; b) Y. Zhao, L. Zhang, G. Xu, J. Zheng,
J. Hu, Sci. Sin.: Chim. 2011, 41, 1833-1836; c) G. K. S.
Prakash, C. Ni, F. Wang, J. Hu, G. A. Olah, Angew.
Chem. Int. Ed. 2011, 50, 2559-2563; d) Q. Zhou, A.
Ruffoni, R. Gianatassio, Y. Fujiwara, E. Sella, D.
Shabat, P. S. Baran, Angew. Chem. Int. Ed. 2013, 52,
3949-3592; e) G. K. S. Prakash, C. Ni, F. Wang, Z.
Zhang, R. Haiges, G. A. Olah, Angew. Chem. Int. Ed.
[
2] a) L. Zhang, J.-N. He, Y. Liang, M. Hu, L. Shang, X.
Huang, L. Kong, Z.-X. Wang, B. Peng, Angew. Chem.
Int. Ed. 2019, 58, 5316-5320; b) L. Shang, Y. Chang, F.
Luo, J.-N. He, X. Huang, L. Zhang, L. Kong, K. Li, B.
Peng, J. Am. Chem. Soc. 2017, 139, 4211−4217; c) E. J.
Mensah, M. Karki, J. Magolan, Synthesis 2016, 48,
2
013, 52, 10835-10839; f) W. Miao, C. Ni, Y. Zhao, J.
Hu, J. Fluorine Chem. 2014, 167, 231-236.
[16] a) Y. Zhao, W. Huang, L. Zhu, J. Hu, Org. Lett. 2010,
12, 1444-1447; b) B. Gao, Y. Zhao, M. Hu, C. Ni, J. Hu,
Chem. Chem. J. 2014, 20, 7803-7810; c) B. Gao, Y.
Zhao, J. Hu, J. Hu, Org. Chem. Front. 2015, 2, 163-168;
d) W. Miao, C. Ni, Y. Zhao, J. Hu, Org. Lett. 2016, 18,
2766-2769; e) Y. Zhao, B. Gao, J. Hu, J. Am. Chem.
Soc. 2012, 134, 5790-5793; f) S. Li, P. Peng, J. Wei, Y.
Hu, J. Hu, R. Sheng, Adv. Synth. Catal. 2015, 357,
1
2
421-1436; d) X. F. Wu, K. Natte, Adv. Synth. Catal.
016, 358, 336-352; e) M.-C. Carreño, G.
Hernándeztorres, M. Ribagorda, A. Urbano, Chem.
Commun. 2009, 41, 6129-6144.
[
3] a) J. Legros, R. Dehli, C Bolm, Adv. Synth. Catal.
3
429-3434.
2
005, 347, 19-31; b) J. Shin, Y. Cho, G. Sachs, J. Am.
Chem. Soc. 2004, 126, 7800-7811; c) Q. Zeng, S. Gao,
A.-K. Chelashaw, Mini-Rev. Org. Chem. 2013, 10, 198-
[17] Z. He, P. Tan, C. Ni, J. Hu, Org. Lett. 2015, 17, 1838-
1841.
2
06; d) J.-J. Tarrand, P.-R. Lasala, X. Han, K.-V.
4
This article is protected by copyright. All rights reserved.