10.1002/cctc.201701368
ChemCatChem
COMMUNICATION
[1] a) D. Astruc, nanoparticles and catalysis, Wiley-VCH, 2008; b) L. S. Ott, R.
G. Finke, Coord. Chem. Rev. 2007, 251, 1075; c) V. Polshettiwar, R. S.
Varma, Green Chem. 2010, 12, 743; d) A. M. Molenbroek, S. Helveg, H.
Topsøe, B. S. Clausen, Top. Catal. 2009, 52, 1303; e) D. Wang, D. Astruc,
Chem. Soc. Rev. 2017, 46, 816.
ester group was changed to an amide, the enantioselectivity
remained high, but the yield slightly decreased (2l). For other
disubstituted alkenes, such as 1-phenl-3-bromopropene, trans-
stilbene and dimethyl maleate (2m-2o), the yields and ee were
good to excellent. Several cyclic alkenes, including 1-phenyl
cyclohexene, indene and 1,2-dihydro-naphthalene, were also
tested, giving 14.4-96.8% ee values (2p-2r). However, alkenes
with strong electron-withdrawing groups, such as –CN and –NO2,
failed to give the corresponding products (2s and 2t). The above
results are somehow complementary to the FeII(L)(OTf)2 system
recently reported by Che et al.,[30] in which higher ee values were
obtained for cyclic alkenes, and β-methylstyrene, 1-phenl-3-
bromo-propene and some others provided unsatisfactory results.
The opposite cases were observed in this work.
In addition to high efficiency and enantiomeric selectivity,
further experiments were conducted to determine the essential
catalytic species. A Hg poisoning experiment, together with hot
filtration, verified the heterogeneous nature of the catalysis (see
details in the S.I.). The heterogeneous osmium catalyst also
showed superiority in its recovery and reusability. The recovered
catalyst could be recycled at least 5 times in the AD of styrene
without obvious loss of activity or enantioselectivity, displaying a
high level on the 5th cycle (96.3%). Hence, the osmium
nanocatalyst solves some major problems associated with
homogeneous osmium catalytic systems, such as difficulty in
recovery and product contamination. Usually, Os precursors are
immobilized via molecular interactions with the support materials,
in which the weak interactions can easily be broken,[31] leading
to the Os leaching into reaction solution. The TEM image of the
recovered OsNPs (5th cycle, 1.6±0.5 nm, S.I.), and the ICP data
for OsNPs-2 before the reaction (7.89%) and after the 5th cycle
(7.86%) collectively showed that nearly no leaching occurred
during the hydroxylation process, confirming the outstanding
stability of the nanocatalyst stabilized by C-Os covalent bonds.
[2] a) G. Schmid, Clusters and Colloids, VCH: Weinheim, 1994; b) D. L.
Feldheim, Jr. C. A. Foss, Metal Nanoparticles, Marcel Dekker: New York,
2002.
[3] a) A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 2002, 102, 3757; b) L. Wu,
B.-L. Li, Y.-Y. Huang, H.-F. Zhou, Y.-M. He, Q.-H. Fan, Org.
Lett. 2006, 8, 3605; c) H. Cao, H. Jiang, G. Yuan, Z. Chen, C. Qi, H.
Huang, Chem. Eur. J. 2010, 16, 10553.
[4] a) M. Gholinejad, N. Jeddi, ACS Sustainable Chem. Eng. 2014, 2, 2658; b)
M. D’Halluin, T. Mabit, N. Fairley, V. Fernandez, M. B. Gawande, E. L.
Grognec, F.-X. Felpin, Carbon, 2015, 93, 974; c) J. Oliver-Messeguer, L.
Liu, S. García-García, C. Canós-Giménez, I. Domínguez, R. Gavara, A.
Doménech-Carbó, P. Concepción, A. Leyva-Pérez and A. Corma, J. Am.
Chem. Soc., 2015, 137, 3894–3900
[5] a) M. Kaur, S. Pramanik, M. Kumar, V. Bhalla, ACS Catal. 2017, 7, 2007;
b) R. Gupta, P. K. Sahua, P. K. Sahub, S. K. Srivastavaa, D. D. Agarwal,
Catal. Commun. 2017, 92, 119; c) D. K. Tiwari, J. Pogula, B. Sridhar, D. K.
Tiwari, P. R. Likhar, Chem. Commun. 2015, 51, 13646.
[6] a) L. Wu, Y. Zhang, Y.-G. Ji, Curr. Org. Chem. 2013, 17, 1288; b) L. Wu,
Z.-W. Li, F. Zhang, Y.-M. He, Q.-H. Fan, Adv. Synth. Catal. 2008, 350,
846; c) H. Park, D. A. Reddy, Y. Kim, S. Lee, R. Ma, M. Lim, T. K. Kim,
Appl. Surf. Sci. 2017, 401, 314.
[7] a) G. Zhao, M. Ling, H. Hu, M. Deng, Q. Xue, Y. Lu, Green Chem. 2011,
13, 3088; b) H. Wang, W. Fan, Y. He, J. Wang, J. N. Kondo, T. Tatsumi, J.
Catal. 2013, 299, 10.
[8] W. S. Knowles, Acc. Chem. Res. 1983, 16, 106.
[9] a) Y. Orito, S. Imai, S. Niva, J. Chem. Soc. Jpn. 1979, 1118; b) M. Bartók,
K. Felföldi, G. Szöllösi, T. Bartók, Catal. Lett. 1999, 61, 1.
[10] a) T. Harada, Y. Izumi, Chem. Lett. 1978, 1195; b) Y. Orito, S. Niwa, S.
Imai, J. Syn. Org. Chem., Jpn, 1976, 34, 236.
[11] M. Tamura, H. Fujihara, J. Am. Chem. Soc. 2003, 125, 15742.
[12] K. Sawai, R. Tatumi, T. Nakahodo, H. Fujihara, Angew. Chem., Int. Ed.
2008, 47, 6917.
[13] S. Jansat, M. Gómez, K. Philippot, G. Muller, E. Guiu, C. Claver, S.
Castillón, B. Chaudret, J. Am. Chem. Soc. 2004, 126, 1592.
[14] a) T. Yasukawa, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 2012,
134, 16963; b) T. Yasukawa, A. Suzuki, H. Miyamura, K. Nishino, S.
Kobayashi, J. Am. Chem. Soc. 2015, 137, 6616; c) T. Yasukawa, Y.
Saito, H. Miyamura, S. Kobayashi, Angew. Chem., Int. Ed. 2016, 55,
8058.
In summary, we revealed an unprecedented example of AD
of alkenes catalyzed by binaphthyl-osmium nanocatalyst with
(DHQD)2PHAL as a chiral modifier. Remarkable reactivity and
enantioselectivity dependent on the size and shell effect of the
OsNPs were revealed while altering the ratio of osmium
precursor and bis-diazonium salt. The reaction tolerated various
functional groups, including halogens, phenyls, alicycles, amides
and esters, furnishing the diol products in good to excellent
yields and ee values under mild conditions. In addition, the het-
erogeneous nanocatalyst could be recycled for at least 5 times
without obvious loss of activity or enantioselectivity.
[15] E. Gross, J. H. Liu, S. Alayoglu, M. A. Marcus, S. C. Fakra, F. D. Toste,
G. A. Somorjai, J. Am. Chem. Soc. 2013, 135, 3881.
[16] K. V. S. Ranganath, J. Kloesges, A. H. Schäfer, F. Glorius, Angew.
Chem., Int. Ed. 2010, 49, 7786.
[17] a) A. Mikhailine, A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 2009, 131,
1394; b) J. F. Sonnenberg, N. Coombs, P. A. Dube, R. H. Morris, J. Am.
Chem. Soc. 2012, 134, 5893.
[18] B. Hao, M. J. Gunaratna, M. Zhang, S. Weerasekara, S. N. Seiwald, V.
T. Nguyen, A. Meier, D. H. Hua, J. Am. Chem. Soc. 2016, 138, 16839.
[19] a) S. Kobayashi, M. Sugiura, Adv. Synth. Catal. 2006, 348, 1496; b) C.
Deraedt, D. Astruc, Acc. Chem. Res. 2014, 47, 494.
Acknowledgements ((optional))
[20] a) F. Mirkhalaf, J. Paprotny, D. J. Schiffrin, J. Am. Chem. Soc. 2006, 128,
7400; b) L. Laurentius, S. R. Stoyanov, S. Gusarov, A. Kovalenko, R. Du,
G. P. Lopinski, M. T. McDermott, ACS Nano, 2011, 5, 4219.
[21] V. K. R. Kumar, K. R. Gopidas, Tetrahedron Lett. 2011, 52, 3102.
[22] a) D. Ganapathy, G. Sekar, Org. Lett. 2014, 16, 3856; b) D. Ganapathy,
G. Sekar, Catal. Commun. 2013, 39, 50; c) S. S. Kotha, N. Sharma, G.
Sekar, Adv. Synth. Catal. 2016, 358, 1694.
We are grateful for financial support from the National Natural
Science Foundation of China (NSFC, Grant No. 21372118,
21602108).
Keywords: binaphthyl-osmium nanoparticles • covalent carbon-
metal bond • asymmetric dihydroxylation • alkenes • chiral
modification
[23] a) Y. Zhang, J. Zhu, Y.-T. Xia, X.-T. Sun, L. Wu, Adv. Synth. Catal. 2016,
358, 3039; b) X.-T. Sun, J. Zhu, Y.-T. Xia, L. Wu, ChemCatChem, 2017,
9, 2463; c) Y. Zhang, M. Mao, Y.-G. Ji, J. Zhu, L. Wu, Tetrahedron Lett.
2016, 57, 329.
This article is protected by copyright. All rights reserved.