1280 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 4
Peifer et al.
(10) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.;
McGown, A. T. Novel syntheses of cis and trans isomers of
combretastatin A-4. J. Org. Chem. 2001, 66, 8135-8138.
(11) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.;
Hannick, S. M.; Gherke, L.; Credo, B. R.; Hui, Y. H.; Marsh, K.;
Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg,
S. H.; Sham, H. L. Potent, orally active Heterocycle-based CA-4
analogues. Synthesis, Structure-Activity Relationship, Pharmaco-
kinetics, and in vivo antitumor activity evaluation. J. Med. Chem.
2002, 45, 1697-1711.
(12) Shirai, R.; Takayama, H.; Nishikawa, A.; Koiso, Y.; Hashimoto, Y.
Asymmetric synthesis of antimitotic combretadioxolane with potent
antitumor activity against multi-drug resistant cells. Bioorg. Med.
Chem. Lett. 1998, 8, 1997-2000.
PKC-ꢀ (mouse), and PKC-γ (rat), human cDNAs were used for
the expression of the protein kinases. Kinases were purified by
affinity chromatography using either GSH-agarose (Sigma) or Ni-
NTH-agarose (Qiagen). The purity and identity of each kinase was
checked by SDS-PAGE/silver staining and by Western blot
analysis with specific antibodies.
Protein Kinase Assay. A proprietary protein kinase assay
(33PanQinase Activity Assay) was used for measuring the kinase
activity of the 12 protein kinases. All kinase assays were performed
in 96-well FlashPlates from Perkin-Elmer/NEN (Boston, MA) in a
50 µL reaction volume.
The assay for all enzymes (except for the PKC assay, see below)
contained 60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 3mM
MnCl2, 3 µM sodium orthovanadate, 1.2 mM DTT, 50 µg/mL
PEG20000, 1 µM [γ-33P]-ATP (approximately 5 × 105 cpm per well),
recombinant protein kinase (50-400 ng), and depending on the
kinase, the following substrate proteins: Rb-CTF (CDK1, CDK4,
CDK6), poly(Glu,Tyr)4:1 (EGF-R, ERBB2, TIE2, VEGF-R2), and
histone H1 (CDK2).
The PKC assay contained 60 mM HEPES-NaOH, pH 7.5, 1
mM EDTA, 1.25 mM EGTA, 5 mM MgCl2, 1.32 mM CaCl2, 5
µg/mL phosphatidylserine, 1µg/mL 1,2-dioleyl glycerol, 1.2 mM
DTT, 50 µg/mL PEG20000, 1 µM [γ-33P]-ATP (approximately 5 ×
105 cpm per well), recombinant protein kinase (20-100 ng), and
histone H1 as substrate.
(13) Medarde, M.; Ramos, A. C.; Pelaez, R.; Lo´pez, J. L.; Gra´valos, D.
G.; San Feliciano, A. Synthesis and pharmacological activity of
diarylindole derivatives. Cytotoxic agents based on combretastatins.
Bioorg. Med. Chem. Lett. 1999, 9, 2303.
(14) Simoni, D.; Grisolia, G.; Giannini, G.; Roberti, M.; Rondanin, R.;
Piccagli, L.; Baruchello, R.; Rossi, M.; Romagnoli, R.; Invidiata, F.
P.; Grimaudo, S.; Jung, M. K.; Hamel, E.; Gebbia, N.; Crosta, L.;
Abbadessa, V.; Di Cristina, A.; Dusonchet, L.; Meli, M.; Tolomeo,
M. Heterocyclic and Phenyl Double-Bond-Locked Combretastatin
Analogues Possessing Potent Apoptosis-Inducing Activity in HL60
and in MDR Cell Lines. J. Med. Chem. 2005, 48 (3), 723-736.
(15) Moreau, P.; Anizon, F.; Sancelme, M.; Prudhomme, M.; Bailly, C.;
Carrasco, C.; Ollier, M.; Severe, D.; Riou, J. F.; Fabbro, D.; Meyer,
T.; Aubertin, A. M. Syntheses and biological evaluation of indolo-
carbazoles, analogues of rebeccamycin, modified at the imide
heterocycle. J. Med. Chem. 1998, 7, 41 (10), 1631-1640.
(16) Gray, N.; Detivaud, L.; Doering, C.; Meijer, L. ATP-site directed
inhibitors of cyclin-dependent kinases. Curr. Med. Chem. 1999, 6
(9), 859-875.
(17) Davis, P. D.; Hill, C. H.; Lawton, G.; Nixon, J. S.; Wilkinson, S. E.;
Hurst, S. A.; Keech, E.; Turner, S. E. Inhibitors of protein kinase C.
1. 2,3-Bisarylmaleimides. J. Med. Chem. 1992, 35 (1), 177-184.
(18) Zhang, H.-C.; Ye, H.; Conway, B. C.; Derian, C. K.; Addo, M. F.;
Kuo, G. H.; Hecker, L. R.; Croll, J. L.; Westover, L.; Xu, J. Z.;
Look, R.; Demarest, K. T.; Andrade-Gordon, P.; Damiano, B. P.;
Maryanoff, B. E. 3-(7-Azaindolyl)-4-arylmaleimides as potent, selec-
tive inhibitors of glycogen synthase kinase-3. Bioorg. Med. Chem.
Lett. 2004, 14, 3245-3250.
The compounds were tested at concentrations of 10 and 100 µM
in singlicate. The final DMSO concentration in the assay was 1%.
The reaction cocktails were incubated at 30 °C for 80 min. The
reaction was stopped with 50 µL of 2% (v/v) H3PO4, and plates
were aspirated and washed two times with 200 µL of 0.9% (w/v)
NaCl. Incorporation of 33Pi was determined with a microplate
scintillation counter (Microbeta Trilux, Wallac). All assays were
performed with a BeckmanCoulter/Sagian robotic system.
For each compound, inhibition was calculated as percentage
relative to control values without test compound.
(19) (a) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. A new one
Step Synthesis of maleimides by condensation of glyoxylate esters
with acetamides. Tetrahedron Lett. 1999, 40, 1109-1112. (b) Faul,
M. M.; Winneroski, L. L.; Krumrich, C. A. A new, efficient method
for the synthesis of bisindolylmaleimides. J. Org. Chem. 1998, 63,
6053-6058.
Acknowledgment. Financial support by the Ministerium fu¨r
Umwelt und Forsten/Mainz and the Fonds der Chemischen
Industrie, Germany, is gratefully acknowledged.
(20) Creary, X.; Mehrsheikh-Mohammadi, M. E. Captodative rate en-
hancements in the methylenecyclopropane rearrangement. J. Org.
Chem. 1986, 51, 2664-2668.
Supporting Information Available: MS, NMR, IR-data, and
selectivity profiling for compounds at 100 µM using 12 kinases.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(21) Bensel, N.; Pevere, V.; Desmurs, J. R.; Wagner, A.; Mioskowski,
C. Mesyl guajacol: a versatile intermediate for the synthesis of
5-aminomethyl guajacol and related compounds. Tetrahedron Lett.
2002, 43, 4281-4283.
(22) (a) Okauchi, T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.;
Yoshino, H. A general method for acylation of indoles at the
3-position with acyl chlorides in the presence of dialkylaluminium
chloride. Org. Lett. 2000, 2 (10), 1485-1487. (b) Ottoni, O.; Neder,
A. de V. F.; Dias, A. K. B.; Cruz, R. P. A.; Aquino, L. B. Acylation
of indole under Friedel-Crafts conditions- an improved method to
obtain 3-Acylindoles regioselectively. Org. Lett. 2001, 3 (7), 1005-
1007.
(23) Zhang, Z.; Yang, Z.; Wong, H.; Zhu, J.; Meanwell, N. A.; Kadow,
J. F.; Wang, T. An effective procedure for the acylation of azaindoles
at C-3. J. Org. Chem. 2002, 67, 6226-6227.
(24) Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.;
Artis, D. R.; Muchowski, J. M. N-(Triisopropylsilyl)pyrrole. A
progenitor “par excellence” of 3-substituted pyrroles. J. Org. Chem.
1990, 55, 6317-6328.
References
(1) Carmeliet, P.; Jain, R. K. Angiogenesis in cancer and other diseases.
Nature 2000, 407, 249-257.
(2) Fan, T. D.; Brem, S. In Angiosuppression. The search for new anti-
cancer drugs; Waring, M. J., Ponder, B., Eds.; Kluwer Academic
Press: Dordrecht, The Netherlands, 1992; pp 185-229.
(3) Yancopoulus, G. D.; Davis, S.; Gale, N. W.; Rudge, J. S.; Wiegand,
S. J.; Holash, J. Vascular-specific growth factors and blood vessel
formation. Nature 2000, 407, 242-248.
(4) Tozer, G. M.; Prise, V. E.; Wilson, J.; Locke, R. J.; Vojnovic, B.;
Stratford, M. R. L.; Dennis, M. F.; Chaplin, D. J. Combretastatin
A-4 phosphate as a tumor vascular-targeting agent: early effects in
tumors and normal tissues. Cancer Res. 1999, 59, 1626-1634.
(5) Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Tubulin
as a target for anticancer drugs: agents which interact with the mitotic
spindle. Med. Res. ReV. 1998, 18, 259-296.
(6) Flynn, B. L.; Hamel, E.; Jung, M. K. One-pot synthesis of benzo-
[b]furan and indole inhibitors of tubulin polymerization. J. Med.
Chem. 2002, 45, 2670-2673.
(7) Bibby, M. C. Combretastatin anticancer drugs. Drugs Future 2002,
27 (5), 475-480.
(8) Bailly, C.; Bal, C.; Barbier, P.; Combes, P.; Finet, J.-P.; Hildebrand,
M.-P.; Peyrot, V.; Wattez, N. Synthesis and biological evaluation of
4-Arylcoumarin analogues of combretastatins. J. Med. Chem. 2003,
46 (25), 5437-5444.
(9) Woods, J. A.; Hadfield, J. A.; Pettit, G. R.; Fox, B. W.; McGown,
A. T. The interaction with tubulin of a series of stilbenes based on
combretastatin A-4. Br. J. Cancer 1995, 71, 705-711.
(25) Tholander, J.; Bergman, J. Syntheses of 6,12-disubstituted 5,11-
dihydroindolo[3,2-b]carbazoles, including 5,11-dihydroindolo[3,2-
b]carbazole-6,12-dicarbaldehyde, an extremely efficient ligand for
the TCDD (Ah) receptor. Tetrahedron 1999, 55 (43), 12577-12594.
(26) Pindur, U.; Kim, Y.-S.; Mehrabani, F. Advances in indolo[2,3-a]-
carbazole chemistry: design and synthesis of Protein kinase C and
topoisomerase-I-inhibitors. Curr. Med. Chem. 1999, 6, 29-69.
(27) Reddy, G. M.; Chen, S.-Y.; Uang, B.-J. A facile synthesis of indolo-
[2,3-a]pyrrolo[3,4-c]carbazoles via oxidative photocyclization of
bisindolylmaleimides. Synthesis 2003, 4, 497-500.
(28) Harris, W.; Hill, C. H.; Keech, E.; Malsher, P. Oxidative cyclisations
with palladium acetate. A short synthesis of staurosporine aglykon.
Tetrahedron Lett. 1993, 34 (51), 8361-8364.