1392
R. Sanz et al.
LETTER
mg, 0,03 mmol) was added, and the resulting solution was stirred at
reflux. The completion of the reduction was monitored by GC-MS
or 1H NMR spectroscopy. For compounds 1a–f, 1n, and 1o, the re-
action mixture was purified by distillation under reduced pressure
to give the pure pyridines. 4-Nitropyridine (2k) was purified by col-
umn chromatography. On the other hand, for 1g–j, 1l, and 1m, the
reaction mixture was treated with EtOAc (5 mL) and extracted with
HCl (1 M) (2 × 10 mL). The aqueous layers were neutralized with
NaOH and extracted with Et2O (3 × 10 mL). The organic extracts
were dried over Na2SO4 and the solvent evaporated under reduced
pressure to give the pure pyridines.
(10) For recent reports, see for instance: (a) Yadav, J. S.; Reddy,
B. V. S.; Reddy, M. M. Tetrahedron Lett. 2000, 41, 2663.
(b) Nicolaou, K. C.; Koumbis, A. E.; Snyder, S. A.;
Simonsen, K. B. Angew. Chem. Int. Ed. 2000, 39, 2529.
(c) Chandrashekar, S.; Reddy, C. R.; Rao, R. J.; Rao, J. M.
Synlett 2002, 349.
(11) PPh3 only deoxygenates pyridine N-oxides at temperatures
over 250 °C.2b
(12) Wang, Y.; Espenson, J. H. Org. Lett. 2000, 2, 3525.
(13) (a) Arnáiz, F. J.; Aguado, R.; Pedrosa, M. R.; de Cian, R.;
Fischer, J. Polyhedron 2000, 19, 2141. (b) Arnáiz, F. J.;
Aguado, R.; Pedrosa, M. R.; Mahía, J.; Maestro, M. A.
Polyhedron 2001, 20, 2781. (c) Arnáiz, F. J.; Aguado, R.;
Pedrosa, M. R.; de Cian, R. Inorg. Chim. Acta 2003, 347, 33.
(14) Sanz, R.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. Synthesis
2002, 856.
(15) Sanz, R.; Escribano, J.; Aguado, R.; Pedrosa, M. R.; Arnáiz,
F. J. Synthesis 2004, 1629.
(16) Aromatic N-oxides were commercially available or prepared
by treatment of the corresponding pyridine with H2O2–
AcOH: Taylor, E. C. Jr.; Crovetti, A. J. Org. Synth. Coll.
Vol. IV; Wiley: New York, 1963, 654.
Acknowledgment
We thank the Ministerio de Educación y Ciencia and FEDER
(BQU2001-1079 and BQU2002-00435) and Junta de Castilla y
León (BU-24/02 and BU-15/03) for financial support. J. Escribano
thanks Junta de Castilla y León for a fellowship.
References
(1) (a) Ochiai, E. In Aromatic Amine Oxides; Elsevier:
Amsterdam, 1967, 184. (b) Gilchrist, T. L. In
Comprehensive Organic Synthesis, Vol. 8; Trost, B. M.;
Fleming, I., Eds.; Pergamon: Oxford, 1991, 390.
(2) (a) Emerson, T. R.; Ress, C. W. J. Chem. Soc. 1962, 1917.
(b) Howard, E. Jr.; Olszewski, W. F. J. Am. Chem. Soc.
1959, 81, 1483.
(3) Katritzky, A. R.; Monro, A. M. J. Chem. Soc. 1958, 1263.
(4) Essery, J. M.; Schofield, K. J. Chem. Soc. 1960, 4953.
(5) Aoyagi, Y.; Abe, T.; Ohta, A. Synthesis 1997, 891.
(6) Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78,
2582.
(17) Nitrones 3 were prepared according to: Mitsui, H.; Zenki, S.;
Shiota, T.; Murahashi, S. J. Chem. Soc., Chem. Commun.
1984, 874.
(18) We have found that in general alkylamines react with
dioxomolybdenum chlorides leading to decomposition
products some of them have been characterized as
alkylammonium polymolybdates: Arnáiz, F. J.; Pedrosa, M.
R.; Aguado, R. unpublished results.
(19) The complete reduction of 5 required about 15 h.
(20) See for instance: (a) Holm, R. H. Chem. Rev. 1987, 87,
1401. (b) Holm, R. H. Chem. Rev. 1990, 100, 183.
(21) Butcher, R. J.; Gunz, H. P.; Maclagan, R. G. A. R.; Kipton,
H.; Powell, J.; Wilkins, C. J.; Hian, Y. S. J. Chem. Soc.,
Dalton Trans. 1975, 1223.
(7) Balicki, R. Synthesis 1989, 645.
(8) McCall, J. M.; Tenbrink, R. E. Synthesis 1975, 335.
(9) Konwar, D.; Boruah, R. C.; Sandhu, J. S. Synthesis 1990,
337.
Synlett 2005, No. 9, 1389–1392 © Thieme Stuttgart · New York