J. Am. Chem. Soc. 1997, 119, 12661-12662
12661
Efficient, Aerobic, Ruthenium-Catalyzed Oxidation
of Alcohols into Aldehydes and Ketones
Istva´n E. Marko´,*,† Paul R. Giles,† Masao Tsukazaki,†
Isabelle Chelle´-Regnaut,† Christopher J. Urch,‡ and
Stephen M. Brown§
Figure 1.
De´partement de Chimie, Laboratoire de Chimie Organique
UniVersite´ Catholique de LouVain, Baˆtiment LaVoisier
Place Louis Pasteur 1, B-1348 LouVain-la-NeuVe, Belgium
Zeneca Agrochemicals, Jealott’s Hill Research Station
Bracknell, Berkshire RG42 6ET, U.K.
many cases, the stoichiometric oxidant used in these processes
is either an amine N-oxide, an iodosobenzene derivative, a per-
oxide, or a combination of oxygen and an aldehyde. In this
latter case, 1 equiv of a carboxylic acid is also produced.11 Few
ruthenium-catalyzed oxidations of alcohols into carbonyl deriva-
tives are known that employ molecular oxygen as the ultimate
oxidant.
Zeneca Process Technology Department
Huddersfield Works, P.O. Box A38, Leeds Road
Huddersfield HD2 1FF, U.K.
ReceiVed September 15, 1997
In 1978, Tang and co-workers reported that hydrated RuCl3
catalyzed the aerobic oxidation of secondary alcohols into
ketones, albeit in modest yields.12 Subsequently, Matsumoto
has revealed that RuO2‚H2O is an effective catalyst for the
transformation of allylic alcohols into enals and enones.13 More
efficient catalysis can be achieved by the use of trinuclear
ruthenium complexes. These organometallics have been shown
by Drago to oxidize a variety of simple alcohols into aldehydes
and ketones under a 40 psi of O2.14 Finally, the elegant work
of Ba¨ckvall, which uses a combination of cobalt and ruthenium
catalysts for the oxidation of some allylic and benzylic alcohols,
is also a notable contribution to this area of research.15
The eagerness of Cu(I) salts to react with O2 and generate
bis-copper peroxides16 coupled with the ability of Ru(VII)
complexes to smoothly oxidize a range of alcohols prompted
us to investigate this bimetallic combination. For our initial
experiments, we selected p-chlorobenzyl alcohol 3 as the test
substrate and reacted it in toluene, under a stream of oxygen,
with catalytic quantities of ruthenium salts, in the presence of
copper(I) ions and base. The results of these studies are
collected in Table 1.
When commercially available tetrapropylammonium perru-
thenate (TPAP; 5 mol %) was added to a suspension of CuCl‚
Phen (5 mol %), K2CO3 (200 mol %), and 1,2-bis(ethoxycar-
bonyl)hydrazine (DEADH2; 25 mol %) in toluene, and the
oxidation was performed as described previously,5 an 80%
conversion of 3 into 4 was realized within 2.5 h (entry 1). This
success prompted us to investigate the need for all of the com-
ponents of this mixture for the oxidation process. Omission of
DEADH2 led to an improvement in catalyst activity and com-
plete conversion of the alcohol took place within the same reac-
The oxidation of alcohols into aldehydes and ketones is of
paramount importance in synthetic organic chemistry.1 The
plethora of reagents that have been developed to accomplish
this reaction is testimony to its importance.2 Unfortunately, one
or more equivalents of these, often hazardous or toxic, oxidizing
agents are usually required. From an economical and environ-
mental viewpoint, catalytic oxidation processes are thus ex-
tremely valuable and those employing molecular oxygen or air
are particularly attractive.3 However, few efficient, catalytic,
aerobic oxidations are known that proceed under mild conditions
and are amenable to the preparation of fine chemicals.4
We have recently reported a copper-catalyzed oxidation
system which employs molecular oxygen or air as the ultimate,
stoichiometric oxidant.5 Using this method, alcohols are
smoothly converted into carbonyl compounds in good yields
and water is released as the only byproduct. During optimiza-
tion of this procedure, we decided to investigate the ability of
other metallic species to catalyze the aerobic oxidation of
alcohols into ketones and aldehydes. Our preliminary studies
focused on the use of various ruthenium salts (Figure 1).
The propensity of ruthenium complexes to transform alcohols
into carbonyl derivatives has been well documented.6-10 In
† Universite´ Catholique de Louvain.
‡ Zeneca Agrochemicals.
§ Zeneca Process Technology Department.
(1) (a) Sheldon, R. A.; Kochi, J. K. In Metal-Catalyzed Oxidations of
Organic Compounds; Academic Press: New York, 1981. (b) Ley, S. V.;
Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639. (c)
Murahashi, S.-I.; Naota, T.; Oda, Y.; Hirai, N. Synlett 1995, 733. (d) Krohn,
K.; Vinke, I.; Adam, H. J. Org. Chem. 1996, 61, 1467 and references cited
therein.
(2) For general reviews on oxidation reactions, see: (a) Larock, R. C.
In ComprehensiVe Organic Transformations; VCH Publishers Inc.: New
York, 1989, 604. (b) Procter, G. In ComprehensiVe Organic Synthesis; Ley,
S. V., Ed.; Pergamon: Oxford, 1991; Vol. 7, p 305. (c) Ley, S. V.; Madin,
A. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 7, p 251. (d) Lee, T. V. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 7, p 291.
(3) (a) Meunier, B. Bull. Soc. Chim. Fr. 1986, 578. (b) Groves, J. T.;
Quinn, R. J. Am. Chem. Soc. 1985, 107, 5790. (c) Leising, R. A.; Takeuchi,
K. Inorg. Chem. 1987, 26, 4391. (d) Okamoto, T.; Sasaki, K.; Oka, S. J.
Am. Chem. Soc. 1988, 110, 1187. (e) Davis, S.; Drago, R. S. J. Chem.
Soc., Chem. Commun. 1990, 250.
(4) (a) Sheldon, R. A. In Dioxygen ActiVation and Homogeneous
Catalytic Oxidation; Simandi, L. L., Ed.; Elsevier: Amsterdam, 1991; p
573. (b) James, B. R. In Dioxygen ActiVation and Homogeneous Catalytic
Oxidation; Simandi, L. L., Ed.; Elsevier: Amsterdam, 1991; p 195.
(5) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J.
Science 1996, 274, 2044.
(6) Sharpless, K. B.; Akashi, K.; Oshima, K. Tetrahedron Lett. 1976,
29, 2503.
(7) (a) Murahashi, S.-I. Pure Appl. Chem. 1992, 64, 403. (b) Murahashi,
S.-I.; Naota, T. In AdVances in Metal-Organic Chemistry; JAI Press:
Greenwich, CT, 1994; Vol. 3, p 225. (c) Murahashi, S.-I.; Naota, T. Synthesis
1993, 433.
(8) (a) Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13. (b)
Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994,
639.
(9) Griffith, W. P. Chem. Soc. ReV. 1992, 21, 179.
(10) For example, see: (a) Bressan, M.; Mengarda, M.; Morvillo, A. In
Dioxygen ActiVation and Homogeneous Catalytic Oxidation; Simandi, L.
L., Ed.; Elsevier: Amsterdam, 1991; p 155. (b) Agarwal, D. D.; Jain, R.;
Sangha, P.; Rastogi, R. Ind. J. Chem. 1993, 32B, 381. (c) Morris, P. E.;
Kiely, D. E. J. Org. Chem. 1987, 52, 1149. (d) Barak, G.; Dakka, J.; Sasson,
Y. J. Org. Chem. 1988, 53, 3553. (e) Boelrijk, A. E. M.; van Velzen, M.
M.; Neenan, T. X.; Reedijk, J.; Kooijman, H.; Spek, A. L. J. Chem. Soc.,
Chem. Commun. 1995, 2465. (f) Tomioka, H.; Takai, K.; Oshima, K.;
Nozaki, H. Tetrahedron Lett. 1981, 22, 1605. (g) Genet, J. P.; Pons, D.;
Juge´, S. Synth. Commun. 1989, 19, 1721. (h) Inokuchi, T.; Nakagawa, K.;
Torii, S. Tetrahedron Lett. 1995, 36, 3223.
(11) (a) Murahashi, S.-I.; Oda, Y.; Naota, T. J. Am. Chem. Soc. 1992,
114, 7913. (b) Murahashi, S.-I.; Naota, T.; Hirai, N. J. Org. Chem. 1993,
58, 7318.
(12) Tang, R.; Diamond, S. E.; Neary, N.; Mares, F. J. Chem. Soc., Chem.
Commun. 1978, 562.
(13) Matsumoto, M.; Watanabe, N. J. Org. Chem. 1984, 49, 3435.
(14) Bilgrien, C.; Davis, S.; Drago, R. S. J. Am. Chem. Soc. 1987, 109,
3786.
(15) (a) Ba¨ckvall, J.-E.; Chowdhury, R. L.; Karlsson, U. J. Chem. Soc.,
Chem. Commun. 1991, 473. (b) Ba¨ckvall, J.-E.; Awasthi, A. K.; Renko, Z.
D. J. Am. Chem. Soc. 1987, 109, 4750. (c) Ba¨ckvall, J.-E.; Hopkins, R. B.
Tetrahedron Lett. 1988, 29, 2885. (d) Ba¨ckvall, J.-E.; Hopkins, R. B.; Grenn-
berg, H.; Mader, M.; Awasthi, A. K. J. Am. Chem. Soc. 1990, 112, 5160.
(16) (a) Karlin, K. D.; Gultneh, Y. Prog. Inorg. Chem. 1987, 35, 219.
(b) Zuberbu¨hler, A. D. In Copper Coordination Chemistry: Biochemical
and Inorganic PerspectiVes; Karlin, K. D., Zubieta, J., Eds.; Adenine:
Guilderland, NY, 1983; p 237.
S0002-7863(97)03227-7 CCC: $14.00 © 1997 American Chemical Society