The growing number of published synthetic methods further
points to the biological significance of hydroxamic acids.6
During these last years, solid-phase organic synthesis (SPOS)
has become an important tool for production of combinatorial
libraries and represents an important tool for the rapid identi-
fication of new lead compounds.7 Recently, several routes for
the preparation of hydroxamic acids on solid phase have been
published. These generally involve either the preparation of a
special linker to which hydroxylamine is attached through a
special N- or O-linkage or the formation of masked hydroxamic
acids on solid support.8 Hydroxamic acids might also be
obtained by direct cleavage of resin-bound esters with hydroxyl-
amine.9 The development of alternative methods to synthesize
this class of compounds is therefore desirable.
Angeli-Rimini’s Reaction on Solid Support:
A New Approach to Hydroxamic Acids
Andrea Porcheddu* and Giampaolo Giacomelli
Dipartimento di Chimica, UniVersita` degli Studi di Sassari, Via
Vienna 2, I-07100 Sassari, Italy
ReceiVed May 17, 2006
The research of unconventional reaction pathways has
frequently encouraged the transfer of solution-phase methodolo-
gies to the solid phase.10 In this context, here we wish to report
a novel technique that exploits a solid-phase version of the
Angeli-Rimini’s reaction as an alternative means to achieve
hydroxamic acids.
Angeli-Rimini’s reaction has been performed for the first
time on solid phase. A convenient one-step procedure for
the synthesis of hydroxamic acids starting from aldehydes
and solid-supported N-hydroxybenzenesulfonamide is re-
ported. The hydroxamates are isolated in good to high yields
and purities by simple evaporation of the volatile solvents,
after treatment of the crude reaction mixture with sequester-
ing agents.
At the end of the last century, in 1896, Angeli and Rimini11
discovered that N-hydroxybenzenesulfonamide 1 formed hy-
droxamic acids 4 in fair to good yields if treated with aldehydes
(5) (a) Durette, Ph. L.; Baker, F.; Baker, P. L.; Boger, J.; Bondy, S. S.;
Hammond, M. L.; Lanza, T. J.; Pessolano, A. A.; Caldwell, G. C.
Tetrahedron Lett. 1990, 31, 1237. (b) Zhu, J.; Robin, S.; Goasdoue´, C.;
Loupy, A.; Galons, H. Synlett 1995, 97.
(6) (a) Altenburger, J. M.; Mioskowski, C.; d’Orchymont, H.; Schirlin,
D.; Schalk, C.; Tarnus, C. Tetrahedron Lett. 1992, 33, 5055. (b) Tamaki,
K.; Ogita, T.; Tanzawa, K.; Sugimura, Y. Tetrahedron Lett. 1993, 34, 683.
(c) Staszak, M. A.; Doecke, C. W. Tetrahedron Lett. 1994, 33, 6021. (d)
Bonnette, C.; Salmon, L.; Gaudemer, A. Tetrahedron Lett. 1996, 37, 1221.
(e) Sparks, S. M.; Vargas, J. D.; Shea, K. J. Org. Lett. 2000, 2, 1473. (f)
Liljebris, C.; Larsen, S. D.; Ogg, D.; Palazuk, B. J.; Bleasdale, J. E. J.
Med. Chem. 2002, 45, 1785. (g) Katritzky, A. R.; Kirichenko, N.; Rogovoy,
B. V. Synthesis 2003, 2777. (h) Giacomelli, G.; Porcheddu, A.; Salaris, M.
Org. Lett. 2003, 5, 2715. (i) Ech-Chada, A.; Minassi, A.; Berton, L.;
Appendino, G. Tetrahedron Lett. 2005, 46, 5113. (j) Gissot, A.; Volonterio,
A.; Zanda, M. J. Org. Chem. 2005, 70, 6925.
Hydroxamic acids are strong metal ion chelators,1 they
possess a wide spectrum of biological activities, such as
antibacterial, antifungal, anti-inflammatory, anti-asthmatic prop-
erties, etc.,2 and are identified as potent inhibitors of matrix
metalloproteinases, a family of zinc-dependent enzymes associ-
ated with diseases, such as cancer, arthritis, and multiple
sclerosis.3 Moreover, several hydroxamic acids show therapeutic
potential as ribonucleoside diphosphate reductase (RDPR)
inhibitors,4 a key enzyme involved in the rate-determining step
of DNA biosynthesis, while the hydroxamic acid function is
present in several natural products and widespread siderophores.5
(7) (a) Ellman, J. A. Acc. Chem. Res. 1996, 29, 132-143. (b) Fruchtel,
J. S.; Jung, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 17-42. (c) Hermkens,
P. H.; Ottenhejim, H. C.; Rees, D. Tetrahedron 1996, 52, 4527-4554. (d)
Hall, S. E. Mol. DiVersity 1999, 4, 131-142.
(8) (a) Floyd, C. D.; Lewis, C. N. PCT Int. Appl. WO 9626223 A1
960829, 1996. (b) Floyd, C. D.; Lewis, C. N.; Patel, S. R.; Whittaker, M.
Tetrahedron Lett. 1996, 37, 8045. (c) Floyd, C. D.; Whittaker, M. PCT Int.
Appl. WO 9626918 A1 960906, 1996. (d) Chen, J. J.; Spatola, A. F.
Tetrahedron Lett. 1997, 38, 1511. (e) Richter, L. S.; Desai, M. C.
Tetrahedron Lett. 1997, 38, 321. (f) Ngu, K.; Patel, D. V. J. Org. Chem.
1997, 62, 7088. (g) Mellor, S. L.; McGuire, C.; Chan, W. C. Tetrahedron
Lett. 1997, 38, 3311. (h) Bauer, U.; Ho, W.-B.; Koskinen, A. P. Tetrahedron
Lett. 1997, 38, 7233 (i) Mellor, S. L.; Chan, W. C. Chem. Commun. 1997,
20, 8045. (j) Khan, S. I.; Grinstaff, M. W. Tetrahedron Lett. 1998, 39,
8031. (k) Dankwardt, S. M. Synlett 1998, 761. (l) Ede, N. J.; James, I. W.;
Krywult, B. M.; Griffiths, R. M.; Eagle, S. N.; Gubbins, B.; Leitch, J. A.;
Sampson, W. R.; Bray, A. M. Lett. Pept. Sci. 1999, 6, 157. (m) Barlaam,
B.; Koza, P.; Berriot, J. Tetrahedron 1999, 55, 7221. (n) Grigg, R.; Major,
J. P.; Martin, F. M.; Whittaker, M. Tetrahedron Lett. 1999, 40, 7709. (o)
Dankwardt, S. M.; Billedeau, R. J.; Lawley, L. K.; Abbot, S. C.; Martin,
R. L.; Chan, C. S.; Van Wart, H. E.; Walker, K. E. Bioorg. Med. Chem.
Lett. 2000, 10, 2513. (p) Thouin, E.; Lubell, W. D. Tetrahedron Lett. 2000,
457. (q) Sasubilli, R.; Gutheil, W. G. J. Comb. Chem. 2004, 6, 911. (r) Ho,
C. Y.; Strobel, E.; Ralbovsky, J.; Galemmo, R. A., Jr. J. Org. Chem. 2005,
70, 4873.
* To whom correspondence should be addressed. Fax: +39-079-212069.
E-mail: anpo@uniss.it.
(1) (a) Kurzak, B.; Kozlowski, H.; Farkas, E. Coord. Chem. ReV. 1992,
114, 169. (b) Boukhris, S.; Souizi, A.; Robert, A. Tetrahedron Lett. 1996,
37, 179.
(2) (a) Weber, G. Cancer Res. 1983, 43, 3466. (b) Miller, M. J. Acc.
Chem. Res. 1986, 19, 49. (c) Miller, M. J. Chem. ReV. 1989, 89, 1563.
(3) (a) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Chem.
ReV. 1999, 99, 2735. (b) Cheng, M.; De, B.; Pikul, S.; Almstead, N. G.;
Natchus, M. G.; Anastasio, M. V.; McPhail, S. J.; Snider, C. E.; Taiwo, Y.
O.; Chen, L.; Dunaway, C. M.; Gu, F.; Dowty, M. E.; Mieling, G. E.; Janusz,
M. J.; Wang-Weigand, S. J. Med. Chem. 2000, 43, 369 and references
therein. (c) Brown, P. D.; Davidson, A. H.; Gearing, A.; Whittaker, M. In
Matrix Metalloproteinase Inhibitors In Cancer Chemotherapy; Clendeninn,
N. J., Appelt, K., Eds.; Humana Press: Totowa, NJ, 2001; pp 113-142.
(d) Park, J. D.; Kim, D. H. Bioorg. Med. Chem. Lett. 2003, 13, 3161. (e)
Wu, T. Y. H.; Hassig, C.; Wu, Y.; Ding, S.; Schultz, P. G. Bioorg. Med.
Chem. Lett. 2004, 14, 449. (f) Molteni, V.; He, X.; Nabakka, J.; Yang, K.;
Kreusch, A.; Gordon, P.; Bursulaya, B.; Warner, I.; Shin, T.; Biorac, T.;
Ryder, N. S.; Goldberg, R.; Doughty, J.; He, Y. Bioorg. Med. Chem. Lett.
2004, 14, 1477.
(9) Zhang, W.; Zhang, L.; Li, X.; Weigel, J. A.; Hall, S. E.; Mayer, J. P.
J. Comb. Chem. 2001, 3, 151.
(10) Although many useful reactions have been optimized for SPOS,
we have observed that the trivial shift of standard solution-phase reactions
to the solid-phase can often be problematic.
(4) (a) Ashley, G. W.; Stubbe, J. Pharmacol. Ther. 1985, 30, 301. (b)
Reichard, P.; Threnberg, A. Science 1983, 221, 514-515. (c) Stubbe, J. J.
Biol. Chem. 1990, 265, 5329. (d) Khan, S. I.; Grinstaff, M. W. Tetrahedron
Lett. 1998, 39, 8031.
10.1021/jo061018g CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/01/2006
J. Org. Chem. 2006, 71, 7057-7059
7057