1156
F. Valdevenito et al. / Catalysis Communications 11 (2010) 1154–1156
4. Conclusions
These present results clearly indicate that the previous conclusions
about the hydrogen spillover action, observed for various transition
metal based catalysts for the HDS reaction are in fact also present, and
appear to be a general behaviour for the HDN reaction as well, as
depicted in Fig. 3. However, the Hso activated MoS-sites are more
active for the HDS reaction than for the HDN reaction.
Fig. 3. Schematic drawing representing the promotional effect of NiXSY provoked
hydrogen spillover, activating the physically separated Mo/Al2O3 sites for the HDN
reaction.
Acknowledgments
The authors thank CONICYT for the financial support (FONDECYT
Grant No. 1060029) and the Faculty of Chemical Sciences, University
of Conception.
simultaneous with HDS of thiophene, Kaluža et al. [19] find a PF of
5.7–4.6 in the HDS and 1.8–1.6 in the HDN over NiMoS catalyst.
Table 2 shows the product formation in the pyridine conversion
over Ni/γ-Al2O3, Mo/γ-Al2O3 and Ni//Mo at 498 K. As seen, n-pentane
is the only reaction product from the Mo/γ-Al2O3 catalyst, while Ni/γ-
Al2O3//Mo/γ-Al2O3 presents n-pentane and piperidine as reaction
products. Sonnemans et al. [20] claim that the pyridine is first
hydrogenated to piperidine, and then further on to pentylamine by C–
N bond cleavage. Finally the pentylamine is transformed to 1-pentene
by a second C–N bond cleavage, as shown in Fig. 2.
References
[1] P. Grange, Catal. Rev. Sci. Eng. 21 (1980) 135.
[2] H. Topsøe, B.S. Clausen, F.E. Massoth, in: J.R. Anderson, M. Boudart (Eds.),
Hydrotreating Catalysts, Science Technol., vol. 11, Springer, Berlin, 1996.
[3] R. Prins, V.H.J. de Beer, G.A. Somorjai, Catal. Rev. Sci. Eng. 31 (1989) 1.
[4] G.C.A. Schuit, B.C. Gates, AlChE J. 19 (1973) 417.
[5] S. Eijsbouts, Appl. Catal., A: Gen. 158 (1997) 53.
The formation of piperidine in the stacked Ni//Mo bed suggests
that Hso promotes the hydrogenation of the pyridine. This behavior is
in close agreement with the results obtained in the HDS of DBT [18] in
which Hso modified the active sites by increasing the amount of
hydrogenation sites rather than the hydrogenolisis sites of the MoS2.
The HDN results of gas-oil enriched with pyridine by Ni/γ-Al2O3
and Mo/γ-Al2O3 monometallic bed catalysts, as well as the stacked-
bed configuration, are summarized in Table 3. The Ni/γ-Al2O3 and Mo/
γ-Al2O3 monometallic catalysts both exhibit some activity for the gas-
oil HDN under the experimental conditions employed. However, also
for the HDN reaction of gas-oil a clear synergism between Ni/γ-Al2O3
and Mo/γ-Al2O3 in separated beds is observed, since the activity of the
Ni/γ-Al2O3//SiO2//Mo/γ-Al2O3 system is higher than the sum of the
Ni/γ-Al2O3 and Mo/γ-Al2O3 systems. Though the activities and Fso in
Tables 1 and 3 obviously cannot be compared directly to the pyridine
results, the Fso tendencies are similar. The promotion factor decreases
when the reaction temperature increases, as was also repeatedly
observed in all earlier work with the HDS reaction [12–17].
[6] D. Whitehurst, T. Isoda, I. Mochida, Adv. Catal. 42 (1998) 345.
[7] H. Topsøe, B.S. Clausen, R. Candia, C. Wivel, S. Mørup, J. Catal. 68 (1981) 433.
[8] H. Topsøe, B.S. Clausen, Catal. Rev. Sci. Eng. 26 (1984) 395.
[9] M. Karroua, P. Grange, B. Delmon, Appl. Catal. 50 (1989) L5.
[10] M. Karroua, H. Matralis, E. Sham, P. Grange, B. Delmon, J. Catal. 139 (1993) 371.
[11] C. Wivel, R. Candia, B.S. Clausen, S. Mørup, H. Topsøe, J. Catal. 68 (1981) 453.
[12] J. Ojeda, N. Escalona, P. Baeza, M. Escudey, F.J. Gil-Llambías, Chem. Commun.
(2003) 1608.
[13] P. Baeza, M.S. Ureta-Zañartu, N. Escalona, J. Ojeda, F.J. Gil-Llambías, B. Delmon,
Appl. Catal., A: Gen. 274 (2004) 303.
[14] P. Baeza, M. Villarroel, P. Ávila, A. López-Agudo, B. Delmon, F.J. Gil-Llambías, Appl.
Catal., A: Gen. 304 (2006) 109.
[15] M. Villarroel, P. Baeza, N. Escalona, J. Ojeda, B. Delmon, F.J. Gil Llambías, Appl.
Catal., A: Gen 345 (2008) 152.
[16] M. Villarroel, P. Baeza, F. Gracia, N. Escalona, P. Ávila, F.J. Gil Llambías, Appl. Catal.,
A: Gen 364 (2009) 75.
[17] M. Villarroel, A. Méndez, G. Águila, N. Escalona, P. Baeza, F. Gil-Llambías, Catal.
Today (2010), doi:10.1016/j.cattod.2010.01.008.
[18] N. Escalona, R. García, G. Lagos, C. Navarrete, P. Baeza, F.J. Gil-Llambías, Catal.
Commun. 7 (2006) 1053.
[19] L. Kaluža, D. Gulková, O. Šolcová, N. Žilková, J. Čejka, Appl. Catal., A: Gen. 351
(2008) 93.
[20] J. Sonnemans, P. Mars, J. Catal. 31 (1973) 209.