10.1002/anie.201705720
Angewandte Chemie International Edition
COMMUNICATION
oxidation of the amine and Hoffmann elimination[23] furnished
terminal alkene 43 in good yield. Finally, alkylation of the methyl
ketone with methallyl iodide, followed by ring-closing olefin
metathesis[ 24 ], and allylic oxidation[ 25 ] furnished the natural
product.
[1]
a) D. S. Matteson, R. J. Moody, Organometallics 1982, 1, 20–29; b) J.
C. H. Lee, R. McDonald, D. G. Hall, Nature Chem. 2011, 3, 894–899; c)
H. Ito, K. Kubota, Org. Lett. 2012, 14, 890–893; d) H. Li, L. Wang, Y.
Zhang, J. Wang, Angew. Chem. Int. Ed. 2012, 51, 2943–2946; e) A. J.
Wommack, J. S. Kingsbury, Tetrahedron Lett. 2014, 55, 3163–3166; f)
H. Li, X. Shangguan, Z. Zhang, S. Huang, Y. Zhang, J. Wang, Org. Lett.
2014, 16, 448–451; g) X. Feng, H. Jeon, J. Yun, Angew. Chem. Int. Ed.
2013, 52, 3989–3992; h) S. Lee, D. Li, J. Yun, Chem. Asian J. 2014, 9,
2440–2443; i) S. H. Cho, J. F. Hartwig, Chem. Sci. 2014, 5, 694–698; j)
Z.-Q. Zhang, C.-T. Yang, L.-J. Liang, B. Xiao, X. Lu, J.-H. Liu, Y.-Y.
Sun, T. B. Marder, Y. Fu, Org. Lett. 2014, 16, 6342–6345; k) A. B.
Cuenca, J. Cid, D. García-López, J. J. Carbó, E. Fernández, Org.
Biomol. Chem. 2015, 13, 9659–9664; l) W. N. Palmer, J. V. Obligacion,
I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 766–769; m) Z.
Zuo, Z. Huang, Org. Chem. Front. 2016, 3, 434–438; n) H. Zhao, M.
Tong, H. Wang, S. Xu, Org. Biomol. Chem. 2017, 15, 3418–3422; o) L.
Wang; T. Zhang, W. Sun, Z. He, C. Xia, Y. Lan, C. Liu, J. Am. Chem.
Soc. 2017, 139, 5257–5264.
O
Me
B(pin)
B(pin)
a.
Li
Me
Me
KOtBu
THF, rt, 3 h
Me
Me
NMe2
NMe2
B(pin)
1
2
OEt
3
then
b. I2
c. NaOMe
d. HCl
I
Me
Me
Me
N
Me
Me
41: 65% yield
>20:1 dr (C1:C2)
6:1 dr (C2:C3)
Me
Me
40
THF, rt, 17 h
42: 70% yield
O
Me
O
Me
O
LDA, THF
0 °C, 1 h
Me
Me
Me3NO
H2O2
NMe2
Me
MeOH
rt, 18 h
DMF
130 °C, 1 h
then
I
Me
Me
[2]
a) K. Endo, T. Ohkubo, M. Hirokami, T. Shibata, J. Am. Chem. Soc.
2010, 132, 11033–11035; b) K. Endo, T. Ohkubo, T. Shibata, Org. Lett.
2011, 13, 3368–3371; ꢀc) K. Endo, T. Ishioka, T. Ohkubo, T. Shibata, J.
Org. Chem. 2012, 77, 7223–7231; d) K. Endo, T. Ohkubo, T. Ishioka, T.
Shibata, J. Org. Chem. 2012, 77, 4826–4831; e) J. C. H. Lee, H.-Y.
Sun, D. G. Hall, J. Org. Chem. 2015, 80, 7134–7143; f) H.-Y. Sun, K.
Kubota, D. G. Hall, Chem. Eur. J. 2015, 21, 19186–19194; g) C. Sun, B.
Potter, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 6534–6537; h) B.
Potter, A. A. Szymaniak, E. K. Edelstein, J. P. Morken, J. Am. Chem.
Soc. 2014, 136, 17918–17921; i) S. Xu, X. Shangguan, H. Li, Y. Zhang,
J. Wang, J. Org. Chem. 2015, 80, 7779–7784; j) M. V. Joannou, B. S.
Moyer, S. J. Meek, J. Am. Chem. Soc. 2015, 137 6176–6179; k) M. V.
Joannou, B. S. Moyer, M. J. Goldfogel, S. J. Meek, Angew. Chem. Int.
Ed. 2015, 54, 14141–14145; l) S. A. Murray, J. C. Green, S. B. Tailor, S.
J. Meek, Angew. Chem. Int. Ed. 2016, 55, 9065–9069; m) Y. Shi, A. H.
Hoveyda, Angew. Chem. Int. Ed. 2016, 55, 3455–3458; n) J. Kim, S.
Park, J. Park, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 1498–1501;
o) J. Park, Y. Lee, J. Kim, S. H. Cho, Org. Lett. 2016, 18, 1210–1213;
p) J. Kim, S. Park, J. Park, S. H. Cho, Angew. Chem. int. Ed. 2016, 55,
1498–1501; q) L.-C. Cui, Z.-Q. Zhang, X. Lu, B. Xiao, Y. Fu, RSC Adv.
2016, 6, 51932–51935; r) A. Ebrahim-Alkhalil, Z.-Q. Zhang, T.-J. Gong,
W. Su, X.-Y. Lu, B. Xiao, Y. Fu, Chem. Commun. 2016, 52, 4891–
4893; s) F. Li, Z.-Q. Zhang, X. Lu, B. Xiao, Y. Fu, Chem. Commun.
2017, 53, 3551–3554; t) Z.-Q. Zhang, B. Zhang, X. Lu, J.-H. Liu, X.-Y.
Lu, B. Xiao, Y. Fu, Org. Lett. 2016, 18, 952–955; u) M. Zhan, R.-Z. Li,
Z.-D. Mou, C.-G. Cao, J. Liu, Y.-W. Chen, D. Niu, ACS Catal. 2016, 6,
3381–3386.
Me
43: 63% yield
Me
Me
O
Me
O
Me
O
H
O
Me
Me
HG2
SeO2
dioxane
80 °C, 3 h
toluene
80 °C, 8 h
H
H
Me
Me
Me
Me
Me
Me
aphanamal
44: 91% yield
49% yield
Figure 1. Stereoselective synthesis of aphanamal.
In conclusion, the addition of a carbanion to an unactivated
alkene is an uncommon event in organic chemistry. While the
overall transformation of the boron alkylidene bears some
similarity to transition metal alkylidene-based processes (i.e. in
olefin metathesis)[26], the stepwise mechanism that operates with
boron appears to be distinct from the concerted nature of
transition metal-based 2+2 reactions and the energetic profile is
much different, offering an opportunity to intercept the
metallacyclobutane in alternate processes. This feature is likely
to find use in construction of complex target structures from
simple starting materials.
[3]
a) K. Endo, M. Hirokami, T. Shibata, J. Org. Chem. 2010, 75, 3469–
3472; b) K. Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136,
10581–10584; c) J. R. Coombs, L. Zhang, J. P. Morken Org. Lett. 2015,
17, 1708–1711; d) W. Jo, J. Kim, S. Choi, S. H. Cho, Angew. Chem. Int.
Ed. 2016, 55, 9690–9694; e) D. J. Blair, D. Tanini, J. M. Bateman, H. K.
Scott, E. L. Myers, V. K. Aggarwal, Chem. Sci. 2017, 2898–2903.
a) M. M. Olmstead, P. P. Power, K. J. Weese, R. J. Doedens, J. Am.
Chem. Soc. 1987, 109, 2541–2542; b) A. Pelter, B. Singaram, L.
Warren, J. W. Wilson, Tetrahedron 1993, 49, 2965–2978; c) T.
Kawashima, N. Yamashita, R. Okazaki, J. Am. Chem. Soc. 1995, 117,
6142–6143; d) M. P. Cooke, J. Org. Chem. 1994, 59, 2930–2031.
For important precedents in B-element addition across p-systems, see:
a) J. J. Hirner, D. J. Faizi, S. A. Blum, J. Am. Chem. Soc. 2014, 136,
4740–4745; b) E. Chong, S. A. Blum, J. Am. Chem. Soc. 2015, 137,
10144–10147; c) M. Suginome, M. Shirakura, A. Yamamoto, J. Am.
Chem. Soc. 2006, 128, 14438–14439; d) K. Semba, Y. Nakao, J. Am.
Chem. Soc. 2014, 136, 7567–7570; e) K. B. Smith, K. M. Logan, W.
You, M. K. Brown, Chem. Eur. J. 2014, 20, 12032–12036.;
Acknowledgements
We thank Professors William F. Bailey (University of
Connecticut) and Lawrence T. Scott (Boston College and
University of Nevada, Reno) for helpful discussion, and we thank
Dr. Bo Li (Boston College) for x-ray crystallography. This
research was supported in part by the U.S. National Institutes of
Health, Institute of General Medical Sciences (GM 59417).
[4]
[5]
Keywords: Cyclization • Boron • Total Synthesis • Alkenes •
Reaction mechanisms
This article is protected by copyright. All rights reserved.