Organic Letters
Letter
developed for 9a1 was found to promote successful cleavage of
both 14a and 14b to generate 15 and 16, respectively. Further,
5 vol % DTT in H2O reduced S-sulfenyl bond of 16 to obtain
17. The HPLC purified 17 containing 10% aq DMSO required
24−48 h for oxidation to give Riparin 1.1(Scheme S1). All
crude reactions HPLC and LCMS have been checked, and
purified products subjected to LC MS/MS analysis (see SI).
The new Pyroacm resin, described above, has some
noteworthy advantages. It has enabled the synthesis of various
C-terminal cysteine containing peptides with high purity. The
Pyroacm resin based procedure is compatible with both Fmoc
and Boc SPPS. Moreover, in this method the linked C-terminal
cysteine does not undergo β-elimination and racemization
during Boc protocol. The Pyroacm resin protocol uses
inexpensive, commercially available reagents and conditions
that are sufficiently mild to be carried out up to a gram scale.
During cleavage conditions, method a is applicable to all the
amino acid residues; however, methods b and c will give rise to
sulfenylation of unprotected Trp residues.13 Our processes
(methods b and c) are still applicable when Trp (CHO) is
employed; the CHO group can be cleaved by brief treatment
with NaOH after disulfide bond formation to give free Trp.14
However, further research is needed to apply the Pyroacm resin
in broad spectrum.
(3) (a) Hiskey, R. G. Protection of Functional Groups in Peptide
Synthesis: The Peptides Analysis, Synthesis, Biology 2014, 3, 137−167.
́
(b) Andreu, D.; Albericio, F.; Sole, N.; Munson, M.; Ferrer, M.;
Barany, G., Formation of Disulfide Bonds in Synthetic Peptides and
Proteins. In Peptide Synthesis Protocols; Pennington, M., Dunn, B., Eds.;
Humana Press, 1995; Vol. 35, pp 91−169. (c) Kamber, B.; Hartmann,
A.; Eisler, K.; Riniker, B.; Rink, H.; Sieber, P.; Rittel, W. Helv. Chim.
Acta 1980, 63, 899.
(4) (a) Veber, D.; Milkowski, J.; Varga, S.; Denkewalter, R.;
Hirschmann, R. J. Am. Chem. Soc. 1972, 94, 5456. (b) Pentelute, B. L.;
Kent, S. B. Org. Lett. 2007, 9, 687. (c) Payne, R. J.; Wong, C.-H. Chem.
Commun. 2010, 46, 21.
(5) (a) Kiso, Y.; Yoshida, M.; Kimura, T.; Fujiwara, Y.; Shimokura,
M. Tetrahedron Lett. 1989, 30, 1979. (b) Royo, M.; Alsina, J.; Giralt,
E.; Slomcyznska, U.; Albericio, F. J. Chem. Soc., Perkin Trans. 1 1995,
1095. (c) Shen, F.; Zhang, Z.-P.; Li, J.-B.; Lin, Y.; Liu, L. Org. Lett.
2011, 13, 568. (d) Gong, Y.-D.; Iwasawa, N. Chem. Lett. 1994, 23,
2139. (e) Tang, S.; Si, Y.-Y.; Wang, Z.-P.; Mei, K.-R.; Chen, X.; Cheng,
J.-Y.; Zheng, J.-S.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 5713.
(6) Lukszo, J.; Patterson, D.; Albericio, F.; Kates, S. Lett. Pept. Sci.
1996, 3, 157.
(7) (a) Rietman, B. H.; Smulders, R. H. P. H.; Eggen, I. F.; Van Vliet,
A.; Van De Werken, G.; Tesser, G. I. Int. J. Pept. Protein Res. 1994, 44,
199. (b) Diaz-Rodriguez, V.; Mullen, D. G.; Ganusova, E.; Becker, J.
M.; Distefano, M. D. Org. Lett. 2012, 14, 5648. (c) Barany, G.; Han,
Y.; Hargittai, B.; Liu, R.-Q.; Varkey, J. T. Biopolymers 2003, 71, 652.
(d) Diaz-Rodriguez, V.; Ganusova, E.; Rappe, T. M.; Becker, J. M.;
Distefano, M. D. J. Org. Chem. 2015, 80, 11266. (e) Huang, Z.;
Derksen, D. J.; Vederas, J. C. Org. Lett. 2010, 12, 2282.
ASSOCIATED CONTENT
* Supporting Information
■
S
(8) (a) Fujii, N.; Otaka, A.; Funakoshi, S.; Bessho, K.; Yajima, H. J.
Chem. Soc., Chem. Commun. 1987, 163. (b) Munson, M. C.; Barany, G.
J. Am. Chem. Soc. 1993, 115, 10203. (c) Hunter, M. J.; Komives, E. A.
Anal. Biochem. 1995, 228, 173. (d) Okamoto, R.; Souma, S.; Kajihara,
Y. J. Org. Chem. 2009, 74, 2494.
The Supporting Information is available free of charge on the
(9) (a) Hiskey, R.; Muthukumaraswamy, N.; Vunnam, R. J. Org.
Chem. 1975, 40, 950. (b) Wollack, J. W.; Zeliadt, N. A.; Mullen, D. G.;
Amundson, G.; Geier, S.; Falkum, S.; Wattenberg, E. V.; Barany, G.;
Distefano, M. D. J. Am. Chem. Soc. 2009, 131, 7293. (c) Mullen, D. G.;
Weigel, B.; Barany, G.; Distefano, M. D. J. Pept. Sci. 2010, 16, 219.
(10) (a) Gong, Y.-D.; Lee, T. J. Comb. Chem. 2010, 12, 393. (b) Lee,
T.; Gong, Y.-D. Molecules 2012, 17, 5467. (c) Kim, S.-G.; Jung, S.-L.;
Lee, G.-H.; Gong, Y.-D. ACS Comb. Sci. 2013, 15, 29.
(11) Maselli, V. M.; Bilusich, D.; Bowie, J. H.; Tyler, M. J. Rapid
Commun. Mass Spectrom. 2006, 20, 797.
(12) Engebretsen, M. A. Y.; Agner, E.; Sandosham, J.; Fischer, P. M.
J. Pept. Res. 1997, 49, 341.
Experimental procedures and characterization data of all
reaction via NMR, IR, HPLC, LC/MS, LC MS/MS data
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(13) Scoffone, E.; Fontana, A.; Rocchi, R. Biochemistry 1968, 7, 971.
(14) Akaji, K.; Tatsumi, T.; Yoshida, M.; Kimura, T.; Fujiwara, Y.;
Kiso, Y. J. Am. Chem. Soc. 1992, 114, 4137.
ACKNOWLEDGMENTS
■
This research was supported by the Bio & Medical Technology
Development Program of the National Research Foundation
(NRF) funded by the Ministry of Science, ICT & Future
Planning (No. 2014M3A9A9073847), and also financially
supported by the Ministry of Trade, Industry & Energy
(MOTIE), and the Korea Institute for Advancement of
Technology (KIAT) through the industrial infrastructure
program for fundamental technologies (Grant No. M0000338).
REFERENCES
■
(1) (a) Xu, X.; Lai, R. Chem. Rev. 2015, 115, 1760. (b) Bulet, P.;
Hetru, C.; Dimarcq, J.-L.; Hoffmann, D. Dev. Comp. Immunol. 1999,
23, 329. (c) Akondi, K. B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.;
Craik, D. J.; Lewis, R. J.; Alewood, P. F. Chem. Rev. 2014, 114, 5815.
(d) Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. Chem. Rev.
2014, 114, 901.
(2) (a) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.
(b) Amblard, M.; Fehrentz, J.-A.; Martinez, J.; Subra, G. Mol.
Biotechnol. 2006, 33, 239. (c) Kent, S. B. H. Chem. Soc. Rev. 2009, 38,
338.
D
Org. Lett. XXXX, XXX, XXX−XXX