D
Synlett
A. Kaga et al.
Letter
2
5, 1. (c) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem.
(r) Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org.
Lett. 2014, 16, 4896. (s) Talukdar, R.; Tiwari, D. P.; Saha, A.;
Ghorai, M. K. Org. Lett. 2014, 16, 3954. (t) Sathishkannan, G.;
Srinivasan, K. Chem. Commun. 2014, 50, 4062. (u) Chakrabarty,
S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew.
Chem. Int. Ed. 2014, 53, 5964. (v) Novikov, R. A.; Tarasova, A. V.;
Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Angew. Chem. Int.
Ed. 2014, 53, 3187.
Int. Ed. 2014, 53, 5504. (d) Liao, S.; Sun, X. L.; Tang, Y. Acc. Chem.
Res. 2014, 47, 2260. (e) de Nanteuil, F.; De Simone, F.; Frei, R.;
Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50,
1
2
0912. (f) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev.
014, 43, 804.
(
7) Kerr recently demonstrated a distinct mode of annulation
between donor–acceptor cyclopropanes and vinyl azides in the
presence of Dy(OTf) as a catalyst in toluene at 110 °C, affording
(10) During the revision of this manuscript, conceptually the same
work on Lewis acid catalyzed [3+2] annulation of donor–accep-
tor cyclopropanes and vinyl azides was reported by Banerjee,
see: Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304.
(11) The reactions of vinyl azide 1a with optically active cyclopro-
pane (S)-2a (99% ee) gave [3+2]-annulation products in up to
93% ee, suggesting that the first C–C bond-forming process
3
1-azabicyclo[3.1.0]hexane scaffolds, see: Tejeda, J. E. C.; Irwin, L.
C.; Kerr, M. A. Org. Lett. 2016, 18, 4738.
(
8) For selected reports on [3+2] annulation of donor–acceptor
cyclopropanes for synthesis of functionalized cyclopentanes
and cyclopentenes, see: (a) Borisov, D. D.; Novikov, R. A.;
Tomilov, Y. V. Angew. Chem. Int. Ed. 2016, 55, 12233. (b) Racine,
S.; Hegedìs, B.; Scopelliti, R.; Waser, J. Chem. Eur. J. 2016, 22,
between 1a and 2a takes place predominantly in an S 2-type
N
1
1997. (c) Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.;
manner (See the Supporting Information for the details). For
relevant reports, see: (a) Pohlhaus, P. D.; Sanders, S. D.; Parsons,
A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
(b) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127,
16014.
Biju, A. T. Angew. Chem. Int. Ed. 2016, 55, 10061. (d) Verma, K.;
Banerjee, P. Adv. Synth. Catal. 2016, 358, 2053. (e) Budynina, E.
M.; Ivanova, O. A.; Chagarovskiy, A. O.; Grishin, Y. K.; Trushkov,
I. V.; Melnikov, M. Y. J. Org. Chem. 2015, 80, 12212.
(f) Rakhmankulov, E. R.; Ivanov, K. L.; Budynina, E. M.; Ivanova,
(12) See the Supporting Information.
O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Latyshev, G. V.;
Trushkov, I. V.; Melnikov, M. Y. Org. Lett. 2015, 17, 770.
(13) The stereochemistry of the major isomer of 6aa (CCDC
1519381), 7aa (CCDC 1519383), 9aa (CCDC 1519478), and 9ca
(CCDC 1519384) were secured by X-ray crystallographic analy-
sis. The data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstruc-
tures.
(g) Cheng, Q.-Q.; Qian, Y.; Zavalij, P. Y.; Doyle, M. P. Org. Lett.
2
2
015, 17, 3568. (h) Serrano, E.; de Nanteuil, F.; Waser, J. Synlett
014, 25, 2285. (i) Tombe, R.; Iwamoto, T.; Kurahashi, T.;
Matsubara, S. Synlett 2014, 25, 2281. (j) Mackay, W. D.; Fistikci,
M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626. (k) de
Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Chem. Soc.
(14) Krapcho, A. P.; Ciganek, E. Org. React. 2013, 81, 1.
(15) For a relevant report on TfOH-mediated elimination of an azido
2014, 136, 6239. (l) Racine, S.; de Nanteuil, F.; Serrano, E.;
ion followed by S 1 type elimination, see: Wrobleski, A.; Aubé, J.
N
Waser, J. Angew. Chem. Int. Ed. 2014, 53, 8484. (m) Xu, H.; Qu, J.-
P.; Liao, S.; Xiong, H.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52,
J. Org. Chem. 2001, 66, 886.
(16) The aminocyclopentane motif is widely utilized in medicinal
applications, see: (a) Hanessian, S.; Vatiki, R. R.; Chattopadhyay,
A. K.; Dorich, S.; Lavallée, C. Bioorg. Med. Chem. 2013, 21, 1775.
(b) Clercq, E. D. Nat. Rev. Drug Discovery 2006, 5, 1015. (c) Stoll,
V.; Stewart, K. D.; Maring, C. J.; Muchmore, S.; Giranda, V.; Gu, Y.
G.; Wang, G.; Chen, Y.; Sun, M.; Zhao, C.; Kennedy, A. L.;
Madigan, D. L.; Xu, Y.; Saldivar, A.; Kati, W.; Laver, G.; Sowin, T.;
Sham, H. L.; Greer, J.; Kempf, D. Biochemistry 2003, 42, 718.
(d) Fülöp, F. Chem. Rev. 2001, 101, 2181. (e) Brodersen, D. E.;
Clemons, W. M. Jr.; Carter, A. P.; Morgan-Warren, R. J.;
Wimberly, B. T.; Ramakrishnan, V. Cell 2000, 103, 1143.
4004. (n) Qu, J.-P.; Liang, Y.; Xu, H.; Sun, X.-L.; Yu, Z.-X.; Tang, Y.
Chem. Eur. J. 2012, 18, 2196. (o) de Nanteuil, F.; Waser, J. Angew.
Chem. Int. Ed. 2011, 50, 12075.
(
9) For recent reports on other types of annulation reactions with
donor–acceptor cyclopropanes, see: (a) Ghosh, A.; Mandal, S.;
Chattaraj, P. K.; Banerjee, P. Org. Lett. 2016, 18, 4940.
(b) Varshnaya, R. K.; Banerjee, P. Eur. J. Org. Chem. 2016, 4059.
(c) Chidley, T.; Vemula, N.; Carson, C. A.; Kerr, M. A.; Pagenkopf,
B. L. Org. Lett. 2016, 18, 2922. (d) Alajarin, M.; Egea, A.; Orenes,
R.-A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275. (e) Das, S.;
Chakrabarty, S.; Daniliuc, C. G.; Studer, A. Org. Lett. 2016, 18,
(17) Procedure for the Synthesis of Cyclopentane 9aa
To a stirred solution of cyclopropane 5a (218 mg, 0.493 mmol)
and vinyl azide 1a (144 mg, 0.993 mmol) in CH Cl (0.8 mL) and
2
784. (f) Ivanova, O. A.; Budynina, E. M.; Khrustalev, V. N.;
Skvortsov, D. A.; Trushkov, I. V.; Melnikov, M. Y. Chem. Eur. J.
016, 22, 1223. (g) Sabbatani, J.; Maulide, N. Angew. Chem. Int.
2
2
2
MeNO (0.2 mL) was added Sc(OTf) (37.6 mg, 0.0764 mmol) at
2
3
Ed. 2016, 55, 6780. (h) Garve, L. K. B.; Petzold, M.; Jones, P. G.;
Werz, D. B. Org. Lett. 2016, 18, 564. (i) Liu, J.; Ye, W.; Qing, X.;
Wang, C. J. Org. Chem. 2016, 81, 7970. (j) Garve, L. K. B.;
Pawliczek, M.; Wallbaum, J.; Jones, P. G.; Werz, D. B. Chem. Eur. J.
0 °C under an Ar atmosphere. The solution was stirred at 0 °C
for 24 h and then quenched with sat. aq NaHCO . The mixture
3
was extracted with CH Cl , and the combined extracts were
2
2
washed with brine, dried over MgSO , and concentrated in
4
2016, 22, 521. (k) Xu, H.; Hu, J.-L.; Wang, L.; Liao, S.; Tang, Y.
vacuo. The resulting crude material was purified by flash
J. Am. Chem. Soc. 2015, 137, 8006. (l) Tabolin, A. A.; Novikov, R.
A.; Khomutova, Y. A.; Zharov, A. A.; Stashina, G. A.; Nelyubina, Y.
V.; Tomilov, Y. V.; Ioffe, S. L. Tetrahedron Lett. 2015, 56, 2102.
column chromatography (hexane–Et O, 100:1 to 90:1) to yield
cyclopentane 9aa (275 mg, 0.468 mmol) in 95% yield as a
2
mixture of diastereomer (major/minor = 88:12, which was
1
(m) Ghosh, A.; Pandey, A. K.; Banerjee, P. J. Org. Chem. 2015, 80,
determined by H NMR analysis). The major isomer could be
7235. (n) Liu, H.; Yuan, C.; Wu, Y.; Xiao, Y.; Guo, H. Org. Lett.
recrystallized from CH Cl –hexane as a colorless crystal.
2
2
2015, 17, 4220. (o) Zhang, J.; Xing, S.; Ren, J.; Jiang, S.; Wang, Z.
Bis(2,6-dimethylbenzyl) (2S*,4R*)-2-azido-2,4-diphenylcy-
Org. Lett. 2015, 17, 218. (p) Wang, H.-P.; Zhang, H.-H.; Hu, X.-Q.;
Xu, P.-F.; Luo, Y.-C. Eur. J. Org. Chem. 2015, 3486. (q) Pandey, A.
K.; Ghosh, A.; Banerjee, P. Eur. J. Org. Chem. 2015, 2517.
clopentane-1,1-dicarboxylate (9aa major)
1
Mp 100–101 °C. H NMR (400 MHz, CDCl ): δ = 2.04 (6 H, s),
3
2.16 (6 H, s), 2.52 (1 H, dd, J = 6.8, 14.4 Hz), 2.79–2.91 (2 H, m),
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E