Journal of Medicinal Chemistry
Brief Article
selectivity over the β and δ isoforms (Figure 4, 15 vs 22),
consistent with our hypothesis. The 200-fold PI3Kα selectivity
seen with phenoxyethylamide 24 (Table 2) again is consistent
with a detrimental interaction of the phenyl group of 24 with
the Asp residue of PI3Kα. A striking combination of the two
aforementioned effects accounts for the dramatic PI3Kα
selectivity difference observed between 17 and homologue
an essential amplifier of mast cell function. Immunity 2002, 16, 441−
4
51.
(6) Ghigo, A.; Damilano, F.; Braccini, L.; Hirsch, E. PI3K inhibition
in inflammation: toward tailored therapies for specific diseases.
BioEssays 2010, 32, 185−196.
(7) Siragusa, M.; Katare, R.; Meloni, M.; Damilano, F.; Hirsch, E.;
Emanueli, C.; Madeddu, P. Involvement of phosphoinositide 3-kinase
γ in angiogenesis and healing of experimental myocardial infarction in
mice. Circ. Res. 2010, 106, 757−768.
1
8. Presumably, the amide carbonyl group of 17 makes a
positive interaction with the liberated Ser885 side chain of
PI3Kα while the clash between the shorter side chain of 17 and
Asp829 of PI3Kα is reduced.
(8) Seropian, I. M.; Abbate, A.; Toldo, S.; Harrington, J.; Smithson,
L.; Ockaili, R.; Mezzaroma, E.; Damilano, F.; Hirsch, E.; Van Tassell,
B. W. Pharmacological inhibition of phosphoinositide 3-kinase gamma
(PI3Kγ) promotes infarct resorption and prevents adverse cardiac
remodeling after myocardial infarction in mice. J. Cardiovasc.
Pharmacol. 2010, 56, 651−658.
In summary, we have discovered potent and isoform selective
inhibitors of PI3Kγ based around a benzothiazole core. To our
knowledge, this is the first report that details structural
determinants of PI3Kγ selectivity around a newly defined
binding cleft adjacent to the ATP binding site and provides a
framework to examine PI3K isoform selectivity.
(
9) Pomel, V.; Klicic, J.; Covini, D.; Church, D. D.; Shaw, J. P.;
Roulin, K.; Burgat-Charvillon, F.; Valognes, D.; Camps, M.; Chabert,
C.; Gillieron, C.; Francon, B.; Perrin, D.; Leroy, D.; Gretener, D.;
Nichols, A.; Vitte, P. A.; Carboni, S.; Rommel, C.; Schwarz, M. K.;
Ruckle, T. Furan-2-ylmethylene thiazolidinediones as novel, potent,
and selective inhibitors of phosphoinositide 3-kinase γ. J. Med. Chem.
006, 55, 3857−3871.
10) Cushing, T. D.; Metz, D. P.; Whittington, D. A.; McGee, L. R.
̧
̈
ASSOCIATED CONTENT
Supporting Information
■
S
2
(
*
Synthetic schemes and experimental procedures, character-
izaton of organic molecules, biochemical assays, crystallographic
PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory
diseases. J. Med. Chem. 2012, 55, 8559−8581.
(11) Bell, K.; Sunose, M.; Ellard, K.; Cansfield, A.; Taylor, J.; Miller,
W.; Ramsden, N.; Bergami, G.; Neubauer, G. SAR studies around a
series of triazolopyridines as potent and selective PI3Kγ inhibitors.
Bioorg. Med. Chem. Lett. 2012, 22, 5257−5263.
AUTHOR INFORMATION
Corresponding Authors
■
(12) Oka, Y.; Yabuuchi, T.; Fujii, Y.; Ohtake, H.; Wakahara, S.;
Matsumoto, K.; Endo, M.; Tamura, Y.; Sekiguchi, Y. Discovery and
optimization of a series of 2-aminothiazole-oxazoles as potent
phosphoinositide 3-kinase γ inhibitors. Bioorg. Med. Chem. Lett.
2
(
012, 22, 7534−7538.
13) Oka, Y.; Yabuuchi, T.; Oi, T.; Kuroda, S.; Fujii, Y.; Ohtake, H.;
Present Addresses
M.C.: AstraZeneca R&D Boston, 35 Gatehouse Drive,
Inoue, T.; Wakahara, S.; Kimura, K.; Fujita, K.; Endo, M.; Taguchi, K.;
Sekiguchi, Y. Discovery of N-{5-[3-(3-hydroxypiperidin-1-yl)-1,2,4-
oxadiazol-5-yl]-4-methyl-1,3-thiazol-2-yl}acetamide (TASP0415914)
as an orally potent phosphoinositide 3-kinase γ inhibitor for the
treatment of inflammatory dieases. Bioorg. Med. Chem. 2013, 21,
‡
Waltham, Massachusetts 02451, United States.
§
G.M.-B.: Sage Therapeutics, 215 First Street, Cambridge,
Massachusetts 02142, United States.
7
(
578−7583.
Notes
14) Leahy, J. W.; Buhr, C. A.; Johnson, H. W. B.; Gyu Kim, B.; Baik,
The authors declare no competing financial interest.
T.; Cannoy, J.; Forsyth, T. P.; Jeong, J. W.; Lee, M. S.; Ma, S.; Noson,
K.; Wang, L.; Williams, M.; Nuss, J. M.; Brooks, E.; Foster, P.; Goon,
L.; Heald, N.; Holst, C.; Jaeger, C.; Lam, S.; Lougheed, J.; Nguyen, L.;
Plonowski, A.; Song, J.; Stout, T.; Wu, X.; Yakes, M. F.; Yu, P.; Zhang,
W.; Lamb, P.; Raeber, O. Dicovery of a novel series of potent and
orally bioavailable phosphoinositide 3-kinase γ inhibitors. J. Med.
Chem. 2012, 55, 5467−5482.
(15) Sunose, M.; Bell, K.; Ellard, K.; Bergamini, G.; Neubauer, G.;
Werner, T.; Ramsden, N. Discovery of 5-(2-amino-[1,2,4]triazolo[1,5-
a]pyridin-7-yl)-N-(tert-butyl)pyridine-3-sulfonamide (CZC24758), as
a potent, orally bioavailable and selective inhibitor of PI3K for the
treatment of inflammatory disease. Bioorg. Med. Chem. Lett. 2012, 22,
ACKNOWLEDGMENTS
■
The authors thank Drs. M. Clark, J. Green, and J. Empfield for
helpful comments during the preparation of this manuscript
and Dr. B. Davis for high resolution mass spectrometric
assistance.
ABBREVIATIONS USED
■
GPCR, G-protein-coupled receptor
4
(
613−4618.
REFERENCES
16) Ueki, K.; Yballe, C. M.; Brachmann, S. M.; Vicent, D.; Watt, J.
■
(
1) Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.;
M.; Kahn, C. R.; Cantley, L. C. Increased insulin sensitivity in mice
lacking p85β subunit of phosphoinositide 3-kinase. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 419−424.
(17) Hirsch, E.; Katanaev, V. L.; Garlanda, C.; Azzolino, O.; Pirola,
L.; Silengo, L.; Sozzani, S.; Mantovani, A.; Altruda, F.; Wymann, M. P.
Central role for G protein-coupled phosphoinositide 3-kinase γ in
inflammation. Science 2000, 287, 1049−1053.
(18) Li, Z.; Jiang, H.; Xie, W.; Zhang, Z.; Smrcka, A. V.; Wu, D. Roles
of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal
transduction. Science 2000, 287, 1046−1049.
(19) Sasaki, T.; Irie-Sasaki, J.; Jones, R. G.; Oliveira-dos-Santos, A. J.;
Stanford, W. L.; Bolon, B.; Wakeham, A.; Itie, A.; Bouchard, D.;
Kozieradzki, I.; Joza, N.; Mak, T. W.; Ohashi, P. S.; Suzuki, A.;
Bilanges, B. The emerging mechanisms of isoform-specific PI3K
signalling. Nat. Rev. Mol. Cell Biol. 2010, 11, 329−342.
(
2) Cantley, L. C. The phosphoinositide 3-kinase pathway. Science
2
(
002, 296, 1655−1657.
3) Hawkins, P. T.; Anderson, K. E.; Davidson, K.; Stephens, L. R.
Signalling through class 1 PI3Ks in mammalian cells. Biochem. Soc.
Trans. 2006, 34, 647−662.
(
4) Ameriks, M. K.; Venable, J. D. Small molecule Inhibitors of
phosphoinositide 3-kinase (PI3K) δ and γ. Curr. Top. Med. Chem.
009, 9, 738−753.
5) Laffargue, M.; Calvez, R.; Finan, P.; Trifilieff, A.; Barbier, M.;
Altruda, F.; Hirsch, E.; Wymann, M. P. Phosphoinositide 3-kinase γ is
2
(
D
dx.doi.org/10.1021/jm500362j | J. Med. Chem. XXXX, XXX, XXX−XXX