Journal of the American Chemical Society
Page 6 of 7
8
.Banik, S. M.; Medley, J. W.; Jacobsen, E. N., Catalytic, Asymmetric
D. J. P.; MacMillan, D. W. C., Copper-Catalyzed Trifluoromethylation of
Alkyl Bromides. J. Am. Chem. Soc. 2019, 141 (17), 6853-6858; (g) Guo,
S.; AbuSalim, D. I.; Cook, S. P., Aqueous Benzylic C–H
Difluorination of Alkenes to Generate Difluoromethylated Stereocenters.
Science 2016, 353 (6294), 51.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
9
. For selected examples, see: (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing,
Trifluoromethylation for Late-Stage Functionalization. J. Am. Chem. Soc.
2018, 140 (39), 12378-12382; (h) Liu, Z.; Xiao, H.; Zhang, B.; Shen, H.;
Zhu, L.; Li, C., Copper-Catalyzed Remote C(sp3)−H Trifluoromethylation
of Carboxamides and Sulfonamides. Angew. Chem. Int. Ed. 2019, 58 (8),
2510-2513.
F.-L., Visible-Light-Induced Hydrodifluoromethylation of Alkenes with a
Bromodifluoromethylphosphonium Bromide. Angew. Chem. Int. Ed.
2
016, 55 (4), 1479-1483; (b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C.,
Electrochemical Difluoromethylarylation of Alkynes. J. Am. Chem. Soc.
018, 140 (7), 2460-2464; (c) Meyer, C. F.; Hell, S. M.; Misale, A.;
2
12.For a review, see: Murarka, S., N‐(Acyloxy)phthalimides as
Redox‐Active Esters in Cross‐Coupling Reactions, Adv. Synth. Catal.
2018, 360, 1735-1753 For selected examples of RAEs as coupling
partners for C-C bond formation, see (a) Edwards, J. T.; Merchant, R. R.;
McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.;
Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P.
S., Decarboxylative Alkenylation. Nature 2017, 545, 213; (b) Qin, T.;
Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.;
Maxwell, B. D.; Eastgate, M. D.; Baran, P. S., A General Alkyl-Alkyl
Cross-Coupling Enabled by Redox-Active Esters and Alkylzinc Reagents.
Science 2016, 352 (6287), 801; (c) Lackner, G. L.; Quasdorf, K. W.;
Overman, L. E., Direct Construction of Quaternary Carbons from Tertiary
Alcohols via Photoredox-Catalyzed Fragmentation of tert-Alkyl N-
Phthalimidoyl Oxalates. J. Am. Chem. Soc. 2013, 135 (41), 15342-15345;
(d) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J., Catalytic Enantioselective
Minisci-type Addition to Heteroarenes. Science 2018, 360 (6387), 419.
13.For selected examples of copper-catalyzed cross-coupling reactions of
RAEs, see: (a) Wang, J.; Shang, M.; Lundberg, H.; Feu, K. S.; Hecker, S.
J.; Qin, T.; Blackmond, D. G.; Baran, P. S., Cu-Catalyzed
Decarboxylative Borylation. ACS Catal. 2018, 8 (10), 9537-9542; (b)
Xue, W.; Oestreich, M., Copper-Catalyzed Decarboxylative Radical
Silylation of Redox-Active Aliphatic Carboxylic Acid Derivatives.
Angew. Chem. Int. Ed. 2017, 56 (38), 11649-11652.
14.(a) Fier, P. S.; Hartwig, J. F., Copper-Mediated Difluoromethylation of
Aryl and Vinyl Iodides. J. Am. Chem. Soc. 2012, 134 (12), 5524-5527; (b)
Serizawa, H.; Ishii, K.; Aikawa, K.; Mikami, K., Copper-Catalyzed
Difluoromethylation of Aryl Iodides with (Difluoromethyl)zinc Reagent.
Org. Lett. 2016, 18 (15), 3686-3689; (c) Bour, J. R.; Kariofillis, S. K.;
Sanford, M. S., Synthesis, Reactivity, and Catalytic Applications of
Isolable (NHC)Cu(CHF2) Complexes. Organometallics 2017, 36 (7),
1220-1223.
Trabanco, A. A.; Gouverneur, V., Hydrodifluoromethylation of Alkenes
with Difluoroacetic Acid. Angew. Chem. Int. Ed. 2019, 58 (26), 8829-
8
Catalyzed Reductive Difluoromethylation of Electron-Deficient Alkenes.
Chem. Eur. J. 2015, 21 (52), 18961-18965; (e) Zhang, M.; Lin, J.-H.;
Xiao, J.-C., Photocatalyzed Cyanodifluoromethylation of Alkenes. Angew.
Chem. Int. Ed. 2019, 58 (18), 6079-6083; (f) Ma, J.-J.; Yi, W.-B., Copper-
Catalyzed Fluoroalkylation of Alkynes, and Alkynyl & Vinyl Carboxylic
Acids with Fluoroalkyl halides. Org. Biomol. Chem. 2017, 15 (20), 4295-
833; (d) Tang, X.-J.; Zhang, Z.; Dolbier Jr, W. R., Direct Photoredox-
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
1
299.
0. For selected examples, see: (a) Prakash, G. K. S.; Hu, J., Selective
Fluoroalkylations with Fluorinated Sulfones, Sulfoxides, and Sulfides.
Acc. Chem. Res. 2007, 40 (10), 921-930; (b) Deng, Z.; Lin, J.-H.; Cai, J.;
Xiao, J.-C., Direct Nucleophilic Difluoromethylation of Carbonyl
Compounds. Org. Lett. 2016, 18 (13), 3206-3209; (c) Chen, D.; Ni, C.;
Zhao, Y.; Cai, X.; Li, X.; Xiao, P.; Hu, J.,
Bis(difluoromethyl)trimethylsilicate Anion: A Key Intermediate in
Nucleophilic Difluoromethylation of Enolizable Ketones with
Me3SiCF2H. Angew. Chem. Int. Ed. 2016, 55 (41), 12632-12636; (d)
Trifonov, A. L.; Zemtsov, A. A.; Levin, V. V.; Struchkova, M. I.; Dilman,
A. D., Nucleophilic Difluoromethylation Using
(Bromodifluoromethyl)trimethylsilane. Org. Lett. 2016, 18 (14), 3458-
3
461; (e) Zhao, Y.; Huang, W.; Zheng, J.; Hu, J., Efficient and Direct
Nucleophilic Difluoromethylation of Carbonyl Compounds and Imines
with Me3SiCF2H at Ambient or Low Temperature. Org. Lett. 2011, 13
(19), 5342-5345; (f) Xie, Q.; Zhu, Z.; Li, L.; Ni, C.; Hu, J., A General
Protocol for C−H Difluoromethylation of Carbon Acids with TMSCF2Br.
Angew. Chem. Int. Ed. 2019, 131 (19), 6471-6476; (g) Wang, X.; Liu, G.;
Xu, X.-H.; Shibata, N.; Tokunaga, E.; Shibata, N., S-
((Phenylsulfonyl)difluoromethyl)thiophenium Salts: Carbon-Selective
Electrophilic Difluoromethylation of β-Ketoesters, β-Diketones, and
Dicyanoalkylidenes. Angew. Chem. Int. Ed. 2014, 53 (7), 1827-1831.
1
15.Li, H.; Breen, C. P.; Seo, H.; Jamison, T. F.; Fang, Y.-Q.; Bio, M. M.,
Ni-Catalyzed Electrochemical Decarboxylative C–C Couplings in Batch
and Continuous Flow. Org. Lett. 2018, 20 (5), 1338-1341.
16.Paeth, M.; Tyndall, S. B.; Chen, L.-Y.; Hong, J.-C.; Carson, W. P.; Liu,
X.; Sun, X.; Liu, J.; Yang, K.; Hale, E. M.; Tierney, D. L.; Liu, B.; Cao,
Z.; Cheng, M.-J.; Goddard, W. A.; Liu, W., Csp3-Csp3 Bond-Forming
Reductive Elimination from Well-Defined Copper(III) Complexes. J. Am.
Chem. Soc. 2019, 141 (7), 3153-3159.
1. For selected examples of trifluoromethylation of alkyl radicals, see: (a)
Paeth, M.; Carson, W.; Luo, J.-H.; Tierney, D.; Cao, Z.; Cheng, M.-J.;
Liu, W., Copper-Mediated Trifluoromethylation of Benzylic Csp3−H
Bonds. Chem. Eur. J. 2018, 24 (45), 11559-11563; (b) Shen, H. G.; Liu,
Z. L.; Zhang, P.; Tan, X. Q.; Zhang, Z. Z.; Li, C. Z., Trifluoromethylation
of Alkyl Radicals in Aqueous Solution. J. Am. Chem. Soc. 2017, 139 (29),
9843-9846; (c) Tan, X. Q.; Liu, Z. L.; Shen, H. G.; Zhang, P.; Zhang, Z.
Z.; Li, C. Z., Silver-Catalyzed Decarboxylative Trifluoromethylation of
Aliphatic Carboxylic Acids. J. Am. Chem. Soc. 2017, 139 (36), 12430-
17.Xu, L.; Vicic, D. A., Direct Difluoromethylation of Aryl Halides via
Base Metal Catalysis at Room Temperature. J. Am. Chem. Soc. 2016, 138
(8), 2536-2539.
1
2433; (d) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C.,
18. When excess (DMPU) Zn(CF H) was used, tetrafluoroethane
2
2
2
Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. J.
Am. Chem. Soc. 2018, 140 (21), 6522-6526; (e) Xiao, H.; Liu, Z.; Shen,
H.; Zhang, B.; Zhu, L.; Li, C., Copper-Catalyzed Late-Stage Benzylic
C(sp3)–H Trifluoromethylation. Chem 2019, 5 (4), 940-949; (f) Kornfilt,
2 2 2 2
(HCF CF H) and difluoromethane (CF H ) were detected in the crude
reaction mixtures.
ACS Paragon Plus Environment