of a targeting (bio)-molecule to the fluorescent probe, which
facilitates a target-selective accumulation of fluorophore.7
An alternative approach is the modulation of the fluorescence
signal intensity (from low to high) in response to a specific
molecular recognition at the endogenous target.8,9 In spite
of the success of both strategies a combination of both
processes is rarely investigated. Herein, we outline our
strategy to achieve a prototype azide conjugatable and pH
responsive NIR fluorescent platform. The on/off fluorescence
switching operation would be governed by a straightforward
phenol/phenolate interconversion on the fluorophore with
conjugation to a molecular targeting motif via an alkyne-azide
cycloaddition. To date, there are few literature reports of NIR
pH responsive fluorophores in spite of their potential imaging
applications for disease states that can induce localized intra-
and extracellular pH changes such as cancers, renal failure,
and ischemia.10 Recently, pH responsive cyanine fluoro-
phores covalently attached to bacteriophage particles have
been reported.11
would be capable of conjugation via azide cycloaddition and
the intensity of fluorescence output would be controlled by
a phenol/phenolate interconversion.
The synthetic route commenced with an addition of
nitromethane to chalcone 3, which gave 1-(4-hydroxyphe-
nyl)-4-nitro-3-phenylbutan-1-one 4 in 73% yield (Scheme
1). Subsequent generation of the bis-phenol-substituted
Scheme 1. Synthesis of Fluorophore 2
We have recently developed the BF2-chelated tetraary-
lazadipyrromethene fluorophore class 1 with excellent ab-
sorption and fluorescence properties in the 650-750 nm
spectral region.12 For example, the tetraaryl analogue 1 has
an absorption λmax at 688 nm (ε ) 85 000 dm-3 mol-1 cm-1)
and emission at 716 nm (φF ) 0.36) in chloroform (Figure
1). These promising photophysical characteristics have
azadipyrromethene 5 was achieved by the reflux of 4 with
ammonium acetate in ethanol for 24 h. Filtration of the
precipitate from the crude reaction mixture gave the pure
product in 51% yield. Compound 5 was converted to its BF2-
chelated analogue 6 with BF3 diethyletherate and diisopro-
pylethylamine (DIEA) in dichloromethane for 24 h. An
Figure 1. BF2-chelated tetraarylazadipyrromethenes.
encouraged the adaption of this class to specific functions
such as fluorescent sensors13 and photodynamic therapeutic
agents.14 The synthetic strategy adopted for our current goal
was to develop a short route to the monoalkyne-monophenol-
substituted analogue 2 (Figure 1). It was anticipated that 2
(11) (a) Hilderbrand, S. A.; Kelly, K. A.; Niedre, M.; Weissleder, R.
Bioconjugate Chem. 2008, 19, 1635. (b) Zhang, Z.; Achilefu, S. Chem.
Commun. 2005, 5887.
(12) (a) Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher,
W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619. (b) Killoran,
J.; Allen, L.; Gallagher, J. F.; Gallagher, W. M.; O’Shea, D. F. Chem.
Commun. 2002, 1862.
(7) For examples see: (a) Citrin, D.; Lee, A. K.; Scott, T.; Sproull, M.;
Menard, C.; Tofilon, P. J.; Camphausen, K. Mol. Cancer Ther. 2004, 3,
481. (b) Petrovsky, A.; Schellenberger, E.; Josephson, L.; Weissleder, R.;
Bogdanov, A. Cancer Res. 2003, 8, 1936. (c) Ramjiawan, B.; Maiti, P.;
Aftanas, A.; Kaplan, H.; Fast, D.; Mantsch, H. H.; Jackson, M. Cancer
2000, 89, 1134.
(13) (a) Killoran, J.; McDonnell, S. O.; Gallagher, J. F.; O’Shea, D. F.
New J. Chem. 2008, 483. (b) Loudet, A.; Bandichhor, R.; Wu, L.; Burgess,
K. Tetrahedron 2008, 64, 3642. (c) Gawley, R. E.; Mao, H.; Mahbubul
Haque, M.; Thorne, J. B.; Pharr, J. S. J. Org. Chem. 2007, 72, 2187. (d)
Killoran, J.; O’Shea, D. F. Chem. Commun. 2006, 1503. (e) Hall, M. J.;
Allen, L. T.; O’Shea, D. F. Org. Biomol. Chem. 2006, 776. (f) McDonnell,
S. O.; O’Shea, D. F. Org. Lett. 2006, 8, 3493.
(8) Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Curr. Opin. Biotechnol.
2007, 18, 17
.
(14) (a) McDonnell, S. O.; Hall, M. J.; Allen, L. T.; Byrne, A.; Gallagher,
W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2005, 16360. (b) Gallagher, W. M.;
Allen, L. T.; O’Shea, C.; Kenna, T.; Hall, M.; Killoran, J.; O’Shea, D. F.
Br. J. Cancer 2005, 92, 1702. (c) Byrne, A. T.; O’Connor, A.; Hall, M.;
Murtagh, J.; O’Neill, K.; Curran, K.; Mongrain, K.; Rousseau, J. A.;
Lecomte, R.; McGee, S.; Callanan, J. J.; O’Shea, D. F.; Gallagher, W. M.
Br. J. Cancer 2009, 101, 1565.
(9) (a) Fonovic´, M.; Bogyo, M. Curr. Pharm. Des. 2007, 13, 253. (b)
Blum, G.; Mullins, S. R.; Keren, K.; Fonovic, M.; Jedeszko, C.; Rice, M. J.;
Sloane, B. F.; Bogyo, M. Nat. Chem. Biol. 2005, 1, 203
.
(10) (a) Gillies, R. J.; Raghunand, N.; Garcia-Martin, M. L.; Gatenby,
R. A. IEEE Eng. Med. Biol. Mag. 2004, 57. (b) Stubbs, M.; McSheehy,
P. M. J.; Griffiths, J. R.; Bashford, C. L. Mol. Med. Today 2000, 6, 15.
Org. Lett., Vol. 11, No. 23, 2009
5387