4
Tetrahedron
1. Glimcher, L. H. PCT Int. Appl. WO 2008103314; Chem. Abstr.
2008, 149, 299867.
Table 2. Two-step SNAr decarboxylation sequence on chloropyrimidines
18a-g.16
2. Rivkin, A.; Ahearn, S.P.; Chichetti, S. M.; Kim, Y. R.; Li, C.;
Rosenau, A.; Kattar, S. D.; Jung, J.; Shah, S.; Hughes, B. L.;
Crispino, J. L.; Middleton, R. E.; Szewczak, A. A.; Munoz, B.;
Shearman, M. S.; Bioorg. Med. Chem. Lett. 2010, 20, 1269-1271.
3. Martin, R.; Mohan, R.; Ordentlich, P.; PCT Int. Appl.
WO 2005047268; Chem. Abstr. 2005, 142, 476293.
4. Artman, G. D. III; Elliott, J. M.; Ji, N.; Liu, D.; Ma, F.; Mainolfi,
N.; Meredith, E.; Miranda, K.; Powers, J. J.; Rao, C. PCT Int.
Appl. WO 2010066684; Chem. Abstr. 2010, 153, 87648.
5. (a) Foote, K. M.; Blades, K.; Cronin, A.; Fillery S.; Guichard, S.;
Hassall, L.; Hickson, I.; Jacq, X.; Jewsbury, P. J.; McGuire, T.;
Nissink, W.; Odera, R.; Page, K.; Perkins, P.; Suleman, A.; Tam,
K. Y.; Thommes, P.; Broadhurst, R.; Wood, C.; J. Med. Chem.
2013, 56, 2125 – 2138. (b) Foote, K. M.; Nissink, J. W. M. PCT
Int. Appl. WO 2010073034; Chem. Abstr. 2010, 153, 145523.
6. (a) Morris, J. J; Pike, K. G. PCT Int. Appl. WO 2009007748;
Chem. Abstr. 2019, 150, 144501. (b) Finlay, M. R.; Buttar, D.;
Critchlow, S. E.; Dishington, A.P.; Fillery, S. M.; Fisher, E.;
Glossop, S.C.; Graham, M. A.; Johnson, T.; Lamont, G. M.;
Mutton, S.; Perkins, P.; Pike, K. G.; Slater, A. M. Bioorg. Med.
Chem. Lett. 2012, 12, 4163-4168.
E
nt
ry
Starting
material
Ester
Product
Yield
17%
Final
Product
Yiel
d
20a
R5=OMe
R2= H
R3= H
1
19a
19b
44%
29%
7. Cimprich, K. A.; Cortez, D. Nat. Rev. Mol. Cell Biol. 2008, 9,
616-627.
8.
Beevers , C.; Li, F.; Liu, L.;
Huang, S. Int. J. Cancer 2006, 119, 757-764.
20b
R5= H
R2= OMe
R3=CF3
2
3
36%
9. Dishington, A.; Fillery, S.; Finlay M. R. V. Tetrahedron Lett.
2010, 51, 4211-4213.
10. Farag, A. M.; Kheder, N. A.; Dawood, K. M. Heterocycles 2009,
78, 937-946.
11. Miltschitzky, S.; Michlova, S.; Stadlbauer, S.; Koenig, B.
Heterocycles 2006, 67, 135-160.
20c
R5= H
R2=OMe
R3=F
12. Krishna, S., J. Chem. Soc., Trans. 1923, 123, 156-160.
13. Typical procedure for the preparation of the sulfones by reaction
of sulfinic acids with benzyl iodides: 4-[2-chloro-6-
(methylsulfonylmethyl)pyrimidin-4-yl]morpholine (11f).
Sodium methanesulfinate (6.49 g, 63.61 mmol) was added in one
portion to 4-(2-chloro-6-(iodomethyl)pyrimidin-4-yl)morpholine
(18 g, 53.01 mmol) in DMF (200 ml). The resulting mixture was
stirred at 25 °C for 2 h. The mixture was diluted with CH2Cl2 and
washed with H2O (2 x 300 ml), aq. sodium thiosulfate (400 ml),
brine (400 ml), dried over MgSO4 and concentrated in vacuo. The
crude solid was triturated with MeOH to give a solid which was
collected by filtration and dried under vacuum to give 4-[2-chloro-
6-(methylsulfonylmethyl)pyrimidin-4-yl]morpholine (14.50 g,
94%) as a cream solid; 1H NMR (400 MHz, DMSO-d6) δ 6.95 (s,
1H), 4.45 (s, 2H), 3.57 - 3.73 (m, 8H) and 3.11 (s, 3H); 13C NMR
(DMSO-d6, 176 MHz): δ (ppm) 163.0, 159.3, 158.9, 103.5, 41.3,
65.4, 60.6 and 44.1; m/z (ES+), 292.05173 [MH]+ C10H15O3N3ClS
requires 292.05172.
19c
19d
28%
36%
57%
75%
CF3
20d
R5=CF3
R2=H
R3=H
N
4
5
Cl
18d
N
N
No
reaction
SMe
Cl
N
-
-
-
-
-
18e
14. (a) Mitin, A. V.; Kashin, A. N.; Beletskaya, I. P. Russ. J. Org.
Chem. 2004, 40, 802–812. (b) Mitin, A. V.; Kashin, A. N.;
Beletskaya, I. P.; Wife, R. Tetrahedron Lett. 2002, 43, 2539-2542.
(c) Fukuda, S.; Fukuda, Y.; Goka, K.; Kumata, T.; Tsutsumiuchi,
K. PCT Int. Appl. WO 2009075080; Chem. Abstr. 2009, 151,
56879.
6
No
reaction
-
15. (a) Goumont, R.; Faucher, N.; Moutiers, G.; Tordeux, M.;
Wakselman, C. Synthesis 1997, 691-695. (b) Kumamoto, K.;
Miyazaki, H.; PCT Int. Appl. WO 2009025397; Chem. Abstr.
2009, 150, 306502.
In conclusion, we have developed two useful novel synthetic
strategies for the rapid synthesis of sulfonylmethyl
pyrimidines, molecules which have been extremely important
in recent drug discovery programs. The benzylic iodide
substitution strategy allows for rapid diversification of the
sulfone moiety and has been used to synthesise over 100
compounds. The direct SNAr-decarboxylation strategy is
useful for the synthesis of electron-poor pyrimidines and
allows even more rapid entry into this type of system.
Supplementary data
16. Typical procedure for the preparation of sulfones via the SNAr-
decarboxylation
sequence:
2-[methylsulfonyl)-2-(6-
(trifluoromethyl)pyrimidin-4-yl]acetate (19d). Methyl 2-
(methylsulfonyl)acetate (275 mg, 1.81 mmol) was dissolved in
DMF (4 ml), to this was added NaH (131 mg, 3.29 mmol) and the
reaction was stirred for 5 min. before the addition of 4-chloro-6-
(trifluoromethyl)pyrimidine (300 mg, 1.64 mmol). The reaction
was stirred overnight at room temperature, quenched with 2 M aq
HCl (100 ml) and extracted with EtOAc (3 x 50 ml). The organic
layer was dried over MgSO4, filtered and evaporated to afford a
yellow gum. The crude product was purified by flash silica gel
chromatography, elution gradient 0% to 50% EtOAc in heptane.
Fractions were evaporated to dryness to afford methyl 2-
[methylsulfonyl)-2-(6-(trifluoromethyl)pyrimidin-4-yl]acetate
(176 mg, 36%) as an off-white solid. 1H NMR (DMSO-d6, 400
MHz): δ 9.56 (s, 1H), 8.24 (d, J 1.3Hz, 1H), 6.32 (s, 1H), 3.79 (s,
3H) and 3.29 (s, 3H); m/z 299.03073 [MH]+ C9H10F3N2O4S
requires 299.03079.
Supplementary data associated with this article can be found
in the online version at……
References and notes