Organic Letters
Letter
bioactive natural products 1−7 was planned (Scheme 6).
Accordingly, the natural products 1−3 were synthesized by the
ASSOCIATED CONTENT
Supporting Information
■
*
S
Scheme 6. Syntheses of Bioactive Paraconic Acid Natural
Products 1−7
Complete experimental procedures and characterization
of new products, NMR spectra, and HPLC chromato-
AUTHOR INFORMATION
■
*
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors are grateful to Indian Institute of Technology
Gandhinagar for facilities and financial support.
■
REFERENCES
■
(
3
1) (a) Drug Stereochemistry: Analytical Methods and Pharmacology,
rd ed.; Joz
́
w
́
iak, K., Lough, W. J., Wainer, I. W., Eds.; CRC Press:
Boca Raton, FL, 2012. (b) Hutt, A. G.; O’Grady, J. J. Antimicrob.
Chemother. 1996, 37, 7−32. (c) Liu, X.; Wang, Y.; Duclos, R. I.;
O’Doherty, G. A. ACS Med. Chem. Lett. 2018, 9, 274−278.
(
2) (a) Kaldre, D.; Klose, I.; Maulide, N. Science 2018, 361, 664−
667. (b) Beletskaya, I. P.; Naj
080−5200. (c) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira,
́
era, C.; Yus, M. Chem. Rev. 2018, 118,
5
α-methylenation of 12a, ent-12b, and ent-12c, respectively,
E. M. Science 2013, 340, 1065−1068. (d) Shi, S.-L.; Wong, Z. L.;
Buchwald, S. L. Nature 2016, 532, 353−356. (e) Bruffaerts, J.; Pierrot,
D.; Marek, I. Nat. Chem. 2018, 10, 1164−1170. (f) Krautwald, S.;
Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 5627−5639.
8c
using the literature procedure. The natural products 4−7
were synthesized by the α-methylation of 13a, 13c, ent-12b,
5d
and ent-12c, respectively, using the reported procedure.
(
3) (a) Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.;
Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898−13901.
b) Zheng, H.; Wang, Y.; Xu, C.; Xu, X.; Lin, L.; Liu, X.; Feng, X. Nat.
In summary, we have developed an efficient and short
synthetic route for the stereodivergent synthesis of substituted
paraconic acids starting from commercially available mal-
eimides 8 and alkyl aldehydes 9. NHC catalysis is established
for a one-step synthesis of 3-acylsuccinimides 10. The first
DKR of 3-acylsuccinimides 10 is accomplished through ATH
to achieve the alcohols 11 or ent-11 in good yields and high
stereoselectivities. Synthesis of trans-paraconic acids 12 or ent-
(
Commun. 2018, 9, 1968. (c) Simmons, B.; Walji, A. M.; MacMillan,
D. W. C. Angew. Chem., Int. Ed. 2009, 48, 4349−4353. (d) Carreras,
J.; Livendahl, M.; McGonigal, P. R.; Echavarren, A. M. Angew. Chem.,
Int. Ed. 2014, 53, 4896−4899.
(4) (a) Park, B. K.; Nakagawa, M.; Hirota, A.; Nakayama, M. J.
Antibiot. 1988, 41, 751−758. (b) Pengsuparp, T.; Cai, L.; Constant,
H.; Fong, H. H. S.; Lin, L.-Z.; Kinghorn, A. D.; Pezzuto, J. M.;
Cordell, G. A.; et al. J. Nat. Prod. 1995, 58, 1024−1031. (c) Liu, Y.-P.;
Zhao, W.-H.; Feng, X.-Y.; Zhang, Z.-J.; Zong, K.; Sun, Z.-G.; Zheng,
Y.-T.; Fu, Y.-H. Bioorg. Chem. 2018, 79, 111−114. (d) Perepogu, A.
K.; Raman, D.; Murty, U. S. N.; Rao, V. J. Synth. Commun. 2010, 40,
686−696.
1
1
2 is realized by DBU catalyzed epimerization of the alcohols
1 or ent-11 followed by hydrolysis and cyclization under the
basic conditions. Conversely, synthesis of cis-paraconic acids
3 or ent-13 is achieved from the alcohols 11 or ent-11 by mild
1
(
5) (a) Saha, S.; Roy, S. C. Tetrahedron 2010, 66, 4278−4283.
hydrolysis followed by cyclization. Using this stereodivergent
synthetic methodology, both the enantiomers of trans-para-
conic acids (12 and ent-12) are synthesized in three steps with
(
b) Brecht-Forster, A.; Fitremann, J.; Renaud, P. Helv. Chim. Acta
2
002, 85, 3965−3974. (c) Takahata, H.; Uchida, Y.; Momose, T. J.
Org. Chem. 1995, 60, 5628−5633. (d) Barros, M. T.; Maycock, C. D.;
Ventura, M. R. Org. Lett. 2003, 5, 4097−4099. (e) Amador, M.; Ariza,
X.; Garcia, J.; Ortiz, J. J. Org. Chem. 2004, 69, 8172−8175.
4
4−52% overall yield and 96% ee. On the other hand, both the
enantiomers of cis-paraconic acids 13 and ent-13 are obtained
in four steps with 54−58% overall yield and 94−95% ee. This
stereodivergent synthetic methodology is successfully applied
for the synthesis of stereoisomeric bioactive paraconic acid
natural products 1−7. Further applications of this NHC
catalysis and the ATH of 3-acylsuccinimides for the synthesis
of other bioactive butyrolactone natural products are currently
underway in our laboratory.
(
6) (a) de Azevedo, M. B. M.; Murta, M. M.; Greene, A. E. J. Org.
Chem. 1992, 57, 4567−4569. (b) Kongsaeree, P.; Meepowpan, P.;
Thebtaranonth, Y. Tetrahedron: Asymmetry 2001, 12, 1913−1922.
(c) Sibi, M. P.; Ji, J. Angew. Chem., Int. Ed. Engl. 1997, 36, 274−276.
(
d) Wang, H.; Tang, P.; Zhou, Q.; Zhang, D.; Chen, Z.; Huang, H.;
Qin, Y. J. Org. Chem. 2015, 80, 2494−2502. (e) Bandichhor, R.;
Nosse, B.; Reiser, O. Top. Curr. Chem. 2005, 243, 43−72.
(7) (a) Schleth, F.; Studer, A. Angew. Chem., Int. Ed. 2004, 43, 313−
315. (b) Nallasivam, J. L.; Fernandes, R. A. Org. Biomol. Chem. 2017,
D
Org. Lett. XXXX, XXX, XXX−XXX