2920
J . Org. Chem. 1996, 61, 2920-2921
Asym m etr ic Syn th esis of 5-Su bstitu ted
γ-La cton es a n d Bu ten olid es via
Nu cleop h ilic Ad d ition s to Oxyca r ben iu m
Ion s Der ived fr om 5(R)-(Men th yloxy)-4(R)-
(p h en ylsu lfa n yl)-2(3H)-d ih yd r ofu r a n on e
Arjan van Oeveren and Ben L. Feringa*
Department of Organic and Molecular Inorganic Chemistry,
Groningen Center for Catalysis and Synthesis,
University of Groningen, Nijenborgh 4,
F igu r e 1.
Sch em e 1
9747 AG Groningen, The Netherlands
Received J anuary 12, 1996
Optically active 5-alkyl-substituted butenolides and
γ-lactones are attractive building blocks in natural
product synthesis1 and comprise structural moieties
frequently present in, e.g., insect pheromones,2 cardeno-
lides,3 lignans, and flavor components.4 Efficient and
stereoselective synthetic routes to these products in
enantiomerically pure form are highly desirable.5 As part
of our explorative studies toward the use of 5(R)-(men-
thyloxy)-2(5H)-furanone (1) as a chiral synthon,6,7 the
enantioselective synthesis of a number of naturally
occurring lignans has been reported.8
5(R)-(Menthyloxy)-2(5H)-furanone (1) reacts with thio-
phenol and a catalytic amount of triethylamine to give
stereospecifically and in excellent yield the trans addition
product 2 (Scheme 1), which features an attractive
functional group arrangement to generate R-sulfanyl
oxycarbenium ion 3. Here we report the fast and highly
stereoselective transformations of 2 to 5-alkyl-substituted
4-(phenylsulfanyl)-2(3H)-dihydrofuranones 4 or 4-(men-
thyloxy)-3-(phenylsulfanyl) carboxylic acids 5, which are
precursors for butenolides and γ-lactones.
and SN1-type processes. It has been shown that Lewis
acid-mediated additions of silylated nucleophiles to R-
and â-sulfanyl-substituted aldehydes proceed with excel-
lent diastereoselectivities.11 Furthermore, reactions of
R-sulfanyl acetals with carbon nucleophiles have been
studied by Saigo and co-workers.12 In furanone 2, an
R-sulfanyl-substituted, mixed acyloxy-alkoxy acetal moi-
ety is present, and upon treatment with a Lewis acid it
is observed that the acyloxy acetal bond is always
broken13 and this reaction path leaves only two likely
intermediates (Figure 1). The stereoselectivity of these
reactions can be rationalized by the Felkin-Ahn model,
and conformers A and B lead to anti and syn adducts,
respectively. Conformer A is preferred, and in most cases
the anti adduct is the only detectable diastereomer.
When 4(R)-(phenylsulfanyl)-substituted furanone 2 is
treated at -70 °C with 1-2 equiv of TiCl4 in the presence
of a variety of nucleophiles such as allylsilanes, silyl enol
ethers, or diorganozinc reagents a very fast reaction
occurs. After a reaction time of 5 min and subsequent
aqueous workup, â,γ-substituted acids 5 are isolated in
56-72% yield and in most cases with a diastereomeric
ratio >98:2 according to 1H and 13C NMR (Scheme 2, path
A, Table 1, entries 2, 4, 6, 8, and 12). In addition to the
acids 5 small amounts of lactones 4 (5-20%) are also
found in the crude product, but these could be easily
separated.
Various methods for C-C bond formation via Lewis
acid-mediated reactions of acetals with nucleophiles have
been developed.9 As demonstrated by a number of
groups,10 there is a mechanistic divergence between SN2-
(1) (a) Hanessian S. In The total synthesis of natural products: The
chiron approach; Pergamon Press: New York, 1983; Chapter 9. (b)
Fernandez, A.-M.; J acob, M.; Gralak, J .; Al-Bayati, Y.; Ple´, G.;
Duhamel, L. Synlett 1995, 431. (c) Takahata, H.; Uchida, Y.; Momose,
T. J . Org. Chem. 1994, 59, 7201. (d) Canan Koch, S. S.; Chamberlin,
A. R. J . Org. Chem. 1993, 58, 2725.
(2) (a) Fukusaki, E.; Senda, S.; Nakazono, Y.; Omata, T. Tetrahedron
1991, 47, 6223. (b) Wheeler, J . W.; Happ, G. M.; Araujo, J .; Pasteels,
J . M. Tetrahedron Lett. 1972, 46, 4635. (c) Mori, K. Tetrahedron 1989,
45, 3233.
(3) Rao, Y. S. Chem. Rev. 1976, 78, 625.
(4) (a) Bloch, R.; Gilbert, L. J . Org. Chem. 1987, 52, 4603. (b) Thijs,
L.; Waanders, W. P.; Stokkingreef, E. H. M.; Zwanenburg, B. Recl.
Trav. Chim. Pays-Bas 1986, 105, 332.
(5) For recent examples, see: (a) Brown, H. C.; Kulkarni, S. V.;
Racherla, U. S. J . Org. Chem. 1994, 59, 365. (b) Miller, M.; Hegedus,
L. S. J . Org. Chem. 1993, 58, 6779. (c) Doyle, M. P.; Protopopova, M.
N.; Zhou, Q.-L.; Bode, J . W. J . Org. Chem. 1995, 60, 6654.
(6) For reviews see: (a) Feringa, B. L.; De J ong, J . C. Bull. Soc.
Chim. Belg. 1992, 101, 627. (b) Feringa, B. L.; De Lange, B.; De J ong,
J . C.; Lubben, M.; Faber, W.; Schudde, E. P. Pure Appl. Chem. 1992,
64, 1865. (c) De J ong, J . C.; Van Bolhuis, F.; Feringa, B. L. Tetrahe-
dron: Asymmetry 1991, 2, 1247.
(7) (a) Feringa, B. L.; De Lange, B.; De J ong, J . C. J . Org. Chem.
1989, 54, 2471. (b) Rispens, M. T.; Keller, E.; De Lange, B.; Zijlstra,
W. J .; Feringa, B. L. Tetrahedron: Asymmetry 1994, 5, 607. (c) Hulst,
R.; De Vries, N. K.; Feringa, B. L. J . Org. Chem. 1994, 59, 7453.
(8) (a) Van Oeveren, A.; J ansen, J . F. G. A.; Feringa, B. L. J . Org.
Chem. 1994, 59, 5999 and references cited. (b) Middel, O.; Woerdenbag,
H. J .; Van Uden, W.; Van Oeveren, A.; J ansen, J . F. G. A.; Feringa, B.
L.; Konings, A. T.; Pras, N.; Kellogg, R. M. J . Med. Chem. 1995, 38,
2112.
When the addition of nucleophiles 9-16 is performed
in the presence of 2 equiv of TiCl4 for 1 min at ambient
temperature, followed by aqueous workup, the lactones
4 are obtained. In a few cases small amounts of the acids
5 (e10%) are also formed. Apparently, the intermediate
6 is activated by the excess of Lewis acid present, and
upon addition of water hydrolysis to the hydroxy acid 8
(10) (a) Mori, I.; Ishihara, K.; Flippin, L. A.; Nozaki, K.; Yamamoto,
H.; Bartlett, P. A.; Heathcock, C. H. J . Org. Chem. 1990, 55, 6107. (b)
Denmark, S. E.; Almstead, N. G. J . Am. Chem. Soc. 1991, 113, 8089.
(c) Sammiaka, T.; Smith, R. S. J . Am. Chem. Soc. 1994, 116, 7915.
(11) Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P. G.; Consolandi,
E. J . Org. Chem. 1992, 57, 456.
(12) Kudo, K.; Hashimoto, Y.; Sukegawa, M.; Hasegawa, M.; Saigo,
K. J . Org. Chem. 1993, 58, 579.
(13) Van Oeveren, A,; Feringa, B. L. Tetrahedron Lett. 1994, 35,
8437.
(9) For representative reviews, see: (a) Alexakis, A.; Mangeney, P.
Tetrahedron: Asymmetry 1990, 1, 477. (b) Mukaiyama, T.; Murakami,
M. Synthesis 1987, 1043.
S0022-3263(96)00078-3 CCC: $12.00 © 1996 American Chemical Society