heterogeneous precursor suspensions, by comparison to
mononuclear active species formed from homogeneous cata-
lyst precursor solutions.
3 (a) L. K. Johnson, M. C. Killian and M. Brookhart, J. Am. Chem.
Soc., 1995, 117, 6414–6115; (b) Z. Guan, P. M. Cotts, E. F.
McCord and S. J. McLain, Science, 1999, 283, 2059–2062. Also
cf. V. M. Moehring and G. Fink, Angew. Chem., Int. Ed. Engl.,
1985, 24, 1001–1003.
Noteworthy, the catalytic activities of the complexes 3 and 4
are lower in heptane and 1-octene than in other solvents.
While the catalyst formed from 4 is stable for hours during
polymerization at 90 1C and 40 bar in heptane, it decomposes
relatively rapidly in toluene under identical conditions.
Considering these differences in activities and polymer micro-
structures and excluding any influence by solvent donor
abilities, we assume that different catalytically active species
are present in heptane and 1-octene as compared to, e.g.
toluene, i.e. a highly active species present in toluene produces
low molecular weight, moderately branched PE while a less
active species present in heptane produces linear high mole-
cular weight PE.
4 (a) C. Wang, S. Friedrich, T. R. Younkin, R. T. Li, R. H. Grubbs,
D. A. Bansleben and M. W. Day, Organometallics, 1998, 17,
3149–3151; (b) L. K. Johnson, A. M. A. Bennett, S. D. Ittel, L.
Wang, A. Parthasarathy, E. Hauptman, R. D. Simpson, J.
Feldman and E. B. Coughlin (DuPont), Int. Pat., WO98/30609,
1998; (c) T. R. Younkin, E. F. Connor, J. I. Henderson, S. K.
Friedrich, R. H. Grubbs and D. A. Bansleben, Science, 2000, 287,
460–462; (d) F. A. Hicks and M. Brookhart, Organometallics,
2001, 20, 3217–3219; (e) R. Soula, J. P. Broyer, M. F. Llauro, A.
Tomov, R. Spitz, J. Claverie, X. Drujon, J. Malinge and T.
Saudemont, Macromolecules, 2001, 34, 2438–2442; (f) V. C.
Gibson, A. Tomov, A. J. P. White and D. J. Williams, Chem.
Commun., 2001, 719–720; (g) M. Zuideveld, P. Wehrmann, C.
Rohr and S. Mecking, Angew. Chem., Int. Ed., 2004, 43, 869–873;
¨
(h) J. C. Jenkins and M. Brookhart, J. Am. Chem. Soc., 2004, 126,
5827–5842; (i) L. Zhang, M. Brookhart and P. S. White, Organo-
In conclusion, the P^O-chelated phosphinesulfonato Ni(II)
methyl complexes 3–5 are single component precursors to
highly active polymerization catalysts. Polymer molecular
weight and microstructure depend strongly on the reaction
medium employed. By appropriate choice very high molecular
weight polyethylene can be obtained, with catalysts which
otherwise afford low molecular weight material. This is also
the first unambiguous demonstration of preparation of poly-
ethylene with high Mn with neutral Ni(II) P^O-chelated cata-
lysts. While a high Mw or Mv was determined in some cases
metallics, 2006, 25, 1868–1874; (j) P. Kuhn, D. Se
Jeunesse, D. Matt, M. Neuburger and A. Mota, Chem.–Eur. J.,
2006, 12, 5210–5219; (k) I. Gottker-Schnetmann, P. Wehrmann, C.
´
meril, C.
¨
Rohr and S. Mecking, Organometallics, 2007, 26, 2348–2362;
¨
¨
(l) S.-M. Yu, A. Berkefeld, I. Gottker-Schnetmann, G. Muller
¨
and S. Mecking, Macromolecules, 2007, 40, 421–428; (m) A.
Bastero, I. Gottker-Schnetmann, C. Rohr and S. Mecking, Adv.
¨
¨
Synth. Catal., 2007, 349, 2307–2316; (n) P. Wehrmann and S.
Mecking, Organometallics, 2008, 27, 1399–1408; (o) J. Pietsch, P.
Braunstein and Y. Chauvin, New J. Chem., 1998, 467–472; (p) F.
Speiser, P. Braunstein and L. Saussine, Acc. Chem. Res., 2005, 38,
784–793.
5 Early work: (a) W. Keim, F. H. Kowaldt, R. Goddard and C.
Kruger, Angew. Chem., Int. Ed. Engl., 1978, 17, 466–467; (b) K. A.
Ostoja-Starzewski and J. Witte, Angew. Chem., Int. Ed. Engl.,
1987, 26, 63–64; (c) U. Klabunde and S. D. Ittel, J. Mol. Catal.
A: Chem., 1987, 41, 123–134.
previously, as far as reported Mn was r104 g molꢁ1 1c,5,13
.
¨
That is, the large majority of polymer chains were rather short,
in contrast to the materials obtained in this work.
We thank Lars Bolk for GPC, DSC and viscosimetry
measurement. Financial support by the BMBF (project
03X5505) is gratefully acknowledged. S. M. is indebted to
the Fonds der Chemischen Industrie.
6 (a) A. Held, F. M. Bauers and S. Mecking, Chem. Commun., 2000,
301–302; (b) A. Tomov, J.-P. Broyer and R. Spitz, Macromol.
Symp., 2000, 150, 53–58; (c) R. Soula, C. Novat, A. Tomov, R.
Spitz, J. Claverie, X. Drujon, J. Malinge and T. Saudemont,
¨
Macromolecules, 2001, 34, 2022–2026; (d) I. Gottker-Schnetmann,
B. Korthals and S. Mecking, J. Am. Chem. Soc., 2006, 128,
7708–7709; (e) S. Mecking, Colloid Polym. Sci., 2007, 285,
605–619.
Notes and references
7 (a) E. Drent, R. van Dijk, R. van Ginkel, B. van Oort and R. I.
Pugh, Chem. Commun., 2002, 744–745; (b) T. Kochi, S. Noda, K.
Yoshimura and K. Nozaki, J. Am. Chem. Soc., 2007, 129,
8948–8949; (c) S. Luo, J. Vela, G. R. Lief and R. F. Jordan, J.
Am. Chem. Soc., 2007, 129, 8946–8947; (d) K. M. Skupov, P. R.
Marella, M. Simard, G. P. A. Yap, N. Allen, D. Conner, B. L.
Goodall and J. P. Claverie, Macromol. Rapid Commun., 2007, 28,
2033–2038.
z Crystal data for 4: C26H26NNiO5PS, M = 554.22 g molꢁ1, mono-
clinic, space group P21/c (no. 14), a = 11.5750(7), b = 13.8165(6),
c = 16.0318(10) A, b = 98.617(5)1, V = 2512.8(2) A3, Z = 4,
Dc = 1.465 g cmꢁ3, m(Mo-Ka) = 0.957 cmꢁ1, T = 100 K, pale yellow
rhombus, STOE IPDS T2, reflections measured: 41 727, unique reflec-
tions: 6018, hkl-range: ꢁ15 to 15; ꢁ18 to 17; ꢁ21 to 21, 2ymax
=
55.991, F2 refinement, parameters: 327, R1 = 0.0363 for 5141 data
(Fo 4 4s(Fo), 0.0478 (all data), wR2 = 0.0753 for 5141 data
(Fo 4 4s(Fo), 0.0801 (all data), Rint = 0.0921, GOF = 1.102.
8 A. Berkefeld and S. Mecking, Angew. Chem., Int. Ed., 2008, 47,
2538–2542.
9 R. J. Nowack, A. K. Hearley and B. Rieger, Z. Anorg. Allg. Chem.,
2005, 631, 2775–2781.
10 (a) A. Bastero, G. Francio, W. Leitner and S. Mecking,
Chem.–Eur. J., 2006, 12, 6110–6116; (b) D. Guironnet and S.
Mecking, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.),
2008, 49, 450–451.
1 (a) S. D. Ittel, L. K. Johnson and M. Brookhart, Chem. Rev., 2000,
100, 1169–1203; (b) V. C. Gibson and S. K. Spitzmesser, Chem.
Rev., 2003, 103, 283–316; (c) S. Mecking, Angew. Chem., Int. Ed.,
2001, 40, 534–540; (d) S. Mecking, Coord. Chem. Rev., 2000, 203,
325–351.
2 (a) L. K. Johnson, S. Mecking and M. Brookhart, J. Am. Chem.
Soc., 1996, 118, 267–268; (b) S. Mecking, L. K. Johnson, L. Wang
and M. Brookhart, J. Am. Chem. Soc., 1998, 120, 888–899; (c) L.
Johnson, L. Wang, S. McLain, A. Bennett, K. Dobbs, E.
Hauptman, A. Ionkin, S. Ittel, K. Kunitsky, W. Marshall, E.
McCord, C. Radzewich, A. Rinehart, K. J. Sweetman, Y. Wang,
Z. Yin and M. Brookhart, ACS Symp. Ser., 2003, 857, 131–142.
11 M. D. Doherty, S. Trudeau, P. S. White, J. P. Morken and M.
Brookhart, Organometallics, 2007, 26, 1261–1269.
12 CRC Handbook of Polymer–Liquid Interaction Parameters and
Solubility Parameters, ed. A. F. M. Barton, CRC press, Boca
Raton, FL, 1990.
13 K. Kurtev and A. Tomov, J. Mol. Catal. A: Chem., 1994, 88,
141–150.
ꢂc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 4965–4967 | 4967