Paper
Green Chemistry
In this instance the solvent based reaction conditions were
found to require 9 days to proceed to 69% conversion (as
measured by F NMR spectroscopy with an internal standard),
whereas the mechanochemically milled reaction provided 59%
conversion in just two hours (Fig. 4).
In conclusion, carbon–fluorine bond formation is possible
under solid-state mechanochemical milling conditions.
However, more significant is the observation that liquid
assisted grinding can be used to favor the formation of one
reaction product over another and can give rise to improved
selectivity. The precise effects of LAG on organic reactions are
(b) B. Rodríguez, A. Bruckmann, T. Rantanen and C. Bolm,
Adv. Synth. Catal., 2007, 349, 2213; (c) A. Stolle, T. Szuppa,
S. E. S. Leonhardt and B. Ondruschka, Chem. Soc. Rev.,
2011, 40, 2317; (d) G.-W. Wang, Chem. Soc. Rev., 2013, 42,
7668; (e) D. Braga, L. Maini and F. Grepioni, Chem. Soc.
Rev., 2013, 42, 7638; (f) E. Boldyreva, Chem. Soc. Rev., 2013,
42, 7719; (g) G. N. Hermann, P. Becker and C. Bolm, Angew.
Chem., Int. Ed., 2016, 55, 3781; (h) S. Lou, Y. Mao, D.-Q. Xu,
J. He, Q. Chen and Z. Xu, ACS Catal., 2016, 6, 3890;
(i) Y. Zhou, F. Guo, C. E. Hughes, D. L. Browne,
T. R. Peskett and K. D. M. Harris, Cryst. Growth Des., 2015,
15, 2901; ( j) N. R. Rightmire, D. L. Bruns, T. P. Hanusa and
W. W. Brennessel, Organometallics, 2016, 35, 1698.
2 (a) Ball Milling Towards Green Synthesis, ed. B. Ranu and A.
Stolle, Royal Society Of Chemistry, Cambridge, U.K., 2014;
(b) A. Sarkar, S. Santra, S. K. Kundu, A. Hajra,
G. V. Zyryanov, O. N. Chupakhin, V. N. Charushin and
A. Majee, Green Chem., 2016, 18, 4475; (c) R. A. Haley,
A. R. Zellner, J. A. Krause, H. Guan and J. Mack, ACS
Sustainable Chem. Eng., 2016, 4, 2464; (d) T. X. Métro,
J. Bonnamour, T. Reidon, J. Sarpoulet, J. Martinez and
F. Lamaty, Chem. Commun., 2012, 48, 11781; (e) T. X. Métro,
J. Bonnamour, T. Reidon, A. Duprez, J. Sarpoulet,
J. Martinez and F. Lamaty, Chem. – Eur. J., 2015, 21, 12787;
(f) E. Colacino, P. Nun, F. M. Colacino, J. Martinez and
F. Lamaty, Tetrahedron, 2008, 64, 5569.
1
9
8
,13
poorly characterized
and the exact rationale for the
1
4
observed selectivity in this reaction remains unclear. Our
current hypothesis is that it derives from changes in the crys-
talline form of the mono-fluorinated product, with such forms
only accessible in the presence of added acetonitrile. These
forms may be meta-stable nano-crystals as described by
Belenguer, Hunter, Sanders and co-workers. Indeed, Jones
and co-workers have described how different quantities of
added LAG can lead to different polymorphs to that of a neat
reaction. The latter point is a significant one as it implies
that to understand such a phenomenon will require expertise
in solid-state chemistry, organic reaction mechanism and
mechano- or tribo-chemical methods. We believe the reaction
manifold described herein is an ideal tool for such a study as
5
a
5
b
1
9
the reaction is clean, can be monitored by F NMR and ceases
to continue as soon as the product mixture is triturated away
from the insoluble Selectfluor material. In addition, we have
also demonstrated that mechanochemical milling can vastly
reduce reaction times with little effect on yield and selectivity.
This has been achieved with comparisons run in our labora-
tories with very closely related reaction conditions. This effect
is applicable across both solid and liquid reagents, as long as
the appropriate grinding agent is used.
3 D. Crawford, J. Casaban, R. Haydon, N. Giri, T. McNally
and S. L. James, Chem. Sci., 2015, 6, 1645.
4 (a) R. Trotzki, M. M. Hoffmann and B. Ondruschka, Green
Chem., 2008, 10, 767; (b) G. Kaupp, CrystEngComm, 2011,
13, 3108; (c) T. Friščić, I. Halasz, P. J. Beldon,
A. M. Belenguer, F. Adams, S. J. Kimber, V. Honkimäki and
R. E. Dinnebier, Nat. Chem., 2013, 5, 66; (d) R. Schmidt,
C. F. Burmeister, M. Balaz, A. Kwade and A. Stolle, Org.
Process Res. Dev., 2015, 19, 427.
5
(a) A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza,
C. A. Hunter and J. K. M. Sanders, Chem. Sci., 2016, 7,
Acknowledgements
6617; (b) D. Hasa, E. Miniussi and W. Jones, Cryst. Growth
D. L. B. thanks Cambridge Reactor Design for a Ph.D. award to
J. L. H., the Bolashak International Scholarship of the
President of the Republic of Kazakhstan for a Scholarship
award to Y. S., the Erasmus programme for support of
L. R. and the School of Chemistry at Cardiff University for
generous support. We thank the EPSRC UK National Mass
Spectrometry Facility at Swansea University for mass spectro-
metry measurements.
Des., 2016, 16, 4582.
6 (a) B. E. Smart, J. Fluorine Chem., 2001, 109, 3; (b) R. Filler
and R. Saha, Future Med. Chem., 2009, 1, 777;
(c) M. Morgenthaler, E. Schweizer, A. Hoffmann-Röder,
F. Benini, R. E. Martin, G. Jaeschke, B. Wagner, H. Fischer,
S. Bendels, D. Zimmerli, J. Schneider, F. Diederich,
M. Kansy and K. Muller, ChemMedChem, 2007, 2, 1100;
(d) D. B. Berkowitz and M. Bose, J. Fluorine Chem., 2001,
112, 13; (e) D. J. O’Hagan, J. Fluorine Chem., 2010, 131,
1071.
7
For reviews about organo-fluorine methods see:
a) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo,
Notes and references
(
1
For reviews about mechanochemistry and selected recent
examples see: (a) S. L. James, C. J. Adams, C. Bolm,
D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris,
G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen,
I. P. Parkin, W. C. Shearouse, J. W. Steed and
D. C. Waddell, Chem. Soc. Rev., 2012, 41, 413;
A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu,
Chem. Rev., 2014, 114, 2432; (b) T. Furuya, C. A. Kuttruff
and T. Ritter, Curr. Opin. Drug Discovery Dev., 2008, 11, 803;
(c) I. Hyohdoh, N. Furuichi, T. Aoki, Y. Itezono, H. Shirai,
S. Ozawa, F. Watanabe, M. Matsushita, M. Sakaitani,
P. S. Ho, K. Takanashi, N. Harada, Y. Tomii, K. Yoshinari,
Green Chem.
This journal is © The Royal Society of Chemistry 2016